Handel mellom land- betydningen av valutaunioner

av

Linn Helene Eileng Yver

Masteroppgave

Masteroppgaven er levert for å fullføre graden

Master i samfunnsøkonomi

Universitetet i Bergen, Institutt for økonomi
Juni 2007
Forord

Stor takk til veilederne Erling Vårdal og Arild Aakvik for god hjelp.
Og tusen takk til Jurgita for fantastisk samarbeid

Linn Helene Eileng Yver, Bergen 1. juni 2007
Sammendrag

Handel mellom land- betydningen av valutaunioner

av

Linn Helene Eileng Yver, Master i samfunnsøkonomi

Universitetet i Bergen, 2007
Veileder(e): Erling Vårdal og Arild Aakvik

I denne oppgaven estimeres effekten av felles valuta på bilateral handel. Studiet fokuserer både på handel innenfor valutaunioner og om det å bli medlem av en valutaunion også har en effekt på handel med andre land utenfor unionen.

For å finne effekten av felles valuta på bilateral handel benyttes en gravitasjonsmodell. Jeg bruker to ulike paneldatasett som inneholder henholdsvis bilaterale handelsverdier for 186 og 217 land. For estimering av modellen bruker jeg STATA versjon 9.2.

Jeg finner en positiv effekt av felles valuta på handel. Men jeg finner også en positiv effekt av å være medlem av en valutaunion på handel utenfor unionen. Jeg estimerer bilateral handel til å være 37,7 % høyere for et landpar hvor det ene landet er medlem i en valutaunion og det andre landet er utenfor.
Innholdsfortegnelse

Forord.. ii
Sammendrag ... iii
Innholdsfortegnelse .. iv
Tabeller ... vi
Kapittel 1 Innledning ... 1
Kapittel 2 Litteraturgjennomgang ... 3
 2.1 Presentasjon av studier på valutaunioner .. 3
 2.1.1 Andrew K. Rose (2000) .. 3
 2.1.2 James Anderson og Eric van Wincoop (2000) .. 5
 2.1.3 Rose og Wincoop (des. 2000) .. 8
 2.1.4 Silviano Tenreyro (november 2001) ... 11
 2.1.5 Glick og Rose (2002) .. 12
 2.1.6 Julie Lochard (2005) ... 13
Kapittel 3 Presentasjon av datamaterialet ... 14
 3.1 "One Money One Market", Rose (2000) .. 15
 3.1.1 Beskrivelse av datasettet ... 15
 3.1.2 Kan den store effekten skyldes feil i dataoppsettet? .. 17
 Hva er et typisk "felles valuta land" ... 17
 Verdien av bilateral handel .. 18
 Utvalget ... 19
 Gravitasjonsmodellen .. 20
 Sammenslåing av data; "pooling" ... 21
 Feil i regresjonen ... 22
 3.1.3 Metode og resultater, "One Money One Market" ... 22
 Hva kan påvirke handel mellom to land? Hvorfor inkluderer han de ulike variablene? ... 23
 Resultater ... 26
 3.2 "Does a Currency affect Trade? The Time Series Evidence)", Glick and Rose (2001) 31
 3.2.1 Beskrivelse av datasettet ... 31
 3.2.2 Analyse .. 33
 Panel estimering .. 34
 Fasteffekt .. 34
 Tilfeldig effekt ... 34
 Problemer med datasettet .. 35
Kapittel 4 Ulike transformeringer av datamaterialet .. 39
 4.1 "One Money One Market" .. 39
 4.1.1 Inkludering av nye variabler ... 39
 4.1.1.1 Valutaunionland ... 40
 4.1.1.2 Remote ... 45
 4.1.1.3 Open og areas .. 46
 4.1.1.4 Resultater ... 46
 4.1.2 Finnes det gode instrument for fellesvaluta- variabelen? .. 49
 4.1.3 Panel data tilnærming .. 50
 4.1.3.1 konstruksjon av landpargrupper .. 50
 4.1.3.2 Resultater ved panelestimering ... 51
 4.2 "Does a Currency affect Trade? The Time Series Evidence" ... 53
Tabeller

Tabell 3.1. Effekt på bilateral handel, ligning 3.1. MKM estimering .. 25
Tabell 3.2. Gjennomsnittsverdi av bilateral handel, for de ulike periodene, samt sammenslått periode ... 28
Tabell 3.3. Test for utelatte variabler og multikollinearitet .. 30
Tabell 3.4 .. 36
Tabell 3.5. Fast effekt og tilfeldig effekt: Bilateral handel .. 38
Tabell 4.1. Ligning (4.1) Effekt på bilateral handel, MKM ... 42
Tabell 4.2 Bilateral handel for valutaunionland og land som ikke er i valutaunion, MKM 44
Tabell 4.3 Ulike variabler inkludert i modellen: MKM med tidsdummyer 48
Tabell 4.4 Korrelasjon mellom variablene i Rose (2000) modellen 50
Tabell 4.5 Modell (3.5): Fast og tilfeldig effekt med årskontroller 52
Tabell 4.6 Modell (3.5), FE og TE; hvor insignifikante variabler blir ekskludert 54
Tabell 4.7 Hausman test, ulike estimeringer av ligning 7 ... 55
Tabell 4.8 Korrelasjon mellom instrument og felles valuta .. 55
Tabell 4.9. Instrument variabel estimering; instrument for felles valuta, panelestimering 56
Kapittel 1 Innledning

Denne oppgaven bygger på gravitasjonsmodellen. Denne sier at graden av handel vil variere med hvor stor ”distanse” det er mellom land. Ideen er at dersom det er stor distanse mellom land vil kostnadene ved handel være store. Et bilde som ofte blir benyttet for å illustrere denne teorien er å se verdien av handel som et isberg; jo lenger varene må reise, jo mer smelter isberget, og jo mindre blir verdien.

Kapittel 2 Litteraturgjennomgang

2.1 Presentasjon av studier på valutaunioner

2.1.1 Andrew K. Rose (2000)

Ved å se på bilateral handel mellom landpar, ønsker Rose i dette arbeidet å undersøke om to land som har felles valuta handler mer med hverandre enn andre landpar. I datasettet hans er det kun 1% av observasjonene hvor landparene er i en valutaunion. Effekten han finner er mildt sagt enorm og har vært vanskelig å akseptere for mange økonomer. Han fant at land som har felles valuta handler ca tre ganger (235%) mer med hverandre, enn land som har ulik valuta. Rose garderer seg ved å si at vi kan ikke ta resultatet helt bokstavelig, men at en i hvert

\(1\) Den Europeiske Monetære Union
\(2\) Ikke alle "land" i datasettene er land i tradisjonell forståelse, men for å forenkle, som i de fleste artikler om emne, så går alle territorier, områder og land under samme betegnelse.
fall kan konkludere med at felles valuta har en positiv effekt på handel. Han har senere fått mye kritikk, både for metodene han har brukt for å generere data samt estimeringsmetodene han benyttet. Dette vil jeg komme mer inn på senere i oppgaven.

Selv om estimeringen til Rose gir en stor og signifikant effekt, kan det ligge mange andre forklaringer (enn felles valuta) bak det faktum at valutaunionland handler mer med hverandre enn andre land. Hvorfor oppgir to eller flere land sin suverene valuta for å ha en felles? Eller

3 Se avsnitt 3.1
4 Se ligning 3.1
5 Siden mange land har knyttet sin valuta mot dollar og mark, eller har adoptert for eksempel dollar.
som i mange tilfeller (spesielt i Amerika hvor land i Sør – Amerika har adoptert dollar\(^6\)) hvorfor binder et lite land seg mot et annet lands valuta. Mange grunner kan nevnes for akkurat dette, for eksempel politisk enighet, eller det kan være at små land kan ha ønske om å binde seg til et stort og sterkt land for å få bukt med høy inflasjon. Men den økonomisk og kulturelle historien mellom to land har også mye å si for hvordan handelsstrukturen deres er. Derfor inkluderer også Rose variabler som kontrollerer for om to land har noen form for felles kolonihistorie. Effekten av kolonihistorien er betydelig større enn hva effekten av valutaunioner er på handel. Rose bruker en dummyvariabel for å kontrollere for om et av landene var under kolonimakten til det andre eller motsatt. Effekten av denne variablen viser seg å være stor, hele 800 % større handel mellom to land hvor et av dem har vært under kolonimakten til det andre, alt annet likt.

Senere i oppgaven går jeg inn på hvilke flere variabler Rose inkluderer i regresjonene sine, og ellers hva han legger til grunn for sine resultater. Men det er viktig å nevne at selv om Rose kontrollerer for mange alternative forklarerkarlinger er det problematiske sider ved hans analyse. Det er for eksempel mulig at han utelater variabler som påvirker bilateral handel.

2.1.2 James Anderson og Eric van Wincoop (2000)

I artikkelen "Gravity with Gravitas; A solution to the Border Puzzle" ønsker Anderson og Wincoop å finne effekten av landegrenser på handel. I dette arbeidet problematiserer de måten gravitasjonslinningen bør bygges opp. De viser i sin artikkel at estimerte gravitasjonslinninger ikke har et godt nok teoretisk fundament. Dette impliserer både at estimeringen lider av skjevheter som følge av utelatte variabler og at komparativ statistiske resultater er ubegrunnet. De utvikler en metode som, ifølge dem, (i) konsistent og effisient estimerer en teoretisk gravitasjonslinning og (ii) kalkulerer korrekt den komparative statistikken av handelsfriksjoner. De bruker metoden for å løse et velkjent paradoks fra McCallum (1995). Han fant at handel mellom kanadiske provinser er 22 ganger (2100 %) større enn handel mellom stater (USA) og provinser, etter å ha kontrollert, slik som gravitasjonsmodellen foreskriver, for størrelse og avstand. Ved metoden til Anderson og Wincoop, finner de at nasjonale grenser reduserer handel mellom USA og Canada med ca 44 %, og mellom andre industrialiserte land reduseres handel med ca 30 %. De mener at McCallums spektakulære funn er et resultat av to faktorer. Det første problemet er at variabler blir utelatt, og her

\(^6\) Som for eksempel Ecuador og Panama.
viktingst at det ikke blir tatt hensyn til relativ avstand.7 For det andre er den kanadiske økonomien for liten for en slik estimering8. Det blir dermed for få observasjoner. Den relative avstanden er beregnet ved:

\[REM_i = \sum_{m \neq j} \frac{d_{im}}{y_m} \] \hfill (2.1)

Hvor \(d_{im} \) er avstanden mellom land \(i \) og \(m \) og \(y_m \) er inntekten i land \(m \). \(REM_i \) uttrykker relativ avstand fra land \(i \) til alle andre land utenom land \(j \), hvor inntekt er brukt som vekter. Denne variabelen blir ofte kalt \textit{remote} eller \textit{remoteness}.

McCallum fokuserte kun effekten på intraprovinshandel, for å finne hvor mye nasjonale grenser reduserer handel. Han var altså interessert i å analysere handel innenfor Canada versus handel mellom Canada og USA. Metoden hans var å undersøke handelsstrømmer mellom kanadiske provinser (intraprovinshandel) og handel mellom dem og stater i USA. Han ser ikke på handelsstrømmer innenfor USA (intrastathandel) i forhold til handel mellom USA og Canada. For å finne en grenseeffekt beregner han distansen mellom alle handelspunkt, som vil være provinser og stater. Om avstanden mellom to provinser og en provins og stat er lik, vil differansen i handel mellom dem indikere hvor mye grensen mellom USA og Canada påvirker handel mellom dem, alt annet likt. Anderson og Wincoop ser på begge disse effektene, idet de først ser på hvordan intraprovinshandelen er versus handel mellom Canada og USA. Deretter ser de på intrastathandel versus handel mellom USA og Canada, og til slutt slår de sammen og ser på effektene samtidig.

Ved å inkludere data fra USA og den relative avstandsvariabel, \textit{remoteness}, finner de at intrastathandel er 1,4 ganger større enn handel mellom stat og provins. Handelen mellom provinsene er 16,3 ganger større enn handel mellom provins og stat. Resultatene de finner her endrer seg ikke mye når de inkluderer begge effektene i samme regresjon.

Videre problematiserer Anderson og Wincoop bruken av \textit{remoteness} variabelen. Selv om denne variabelen er mye brukt i litteraturen, er den, i følge Anderson og Wincoop, uten forbindelse med teorien. Når \textit{remoteness} blir inkludert i regresjonen, endrer grenseeffektene seg lite og \(R^2 \) får ikke en betydelig økning.9

7 Dette blir grundigere diskutert i 3.1.2 og 4.1.1.2
8 Det er og et problem at Canada er svært åpen.
9 Dette kan leses ut i fra tabell 1 i "Gravity with Gravitas; A solution to the Border Puzzle"
Anderson og Wincoop presenterer også en ny måte å bruke gravitasjonsligningen på, for å finne grenseeffekten på handel. Nedenfor presenterer jeg de sentrale elementene i artikkelen til Anderson og Wincoop: De forutsetter komplett spesialisering, det vil si at hvert land spesialiserer seg i produksjon av en vare. Preferansene er gilt av en konstant substitusjonselastisitets, CES, funksjon. Videre antar de at hvert land produserer et fast kvantum av goder som eksporterer. Det vil da si at en økning i handel blant land innenfor samme valutaunion impliserer et tilsvarende fall i handel med andre land. Denne økningen innenfor valutaunionen vil gi en positiv velferds effekt siden handelskostnadene minker. Om handelen mellom en gruppe land er stor før de danner en valutaunion, vil den prosentvise økningen i handel være liten mens velferdsøkningen vil være stor (pga lavere handelskostnader). Modellen ser også på forhold mellom to land relativt til forhold mellom disse og andre land, f.eks. er handel mellom to land avhengig av deres bilaterale handelsbarrierer relativt til gjennomsnittlige handelsbarrierer med alle dens handelspartnere. Hovedproblematikken til Anderson og Wincoop er at ved tidligere måter å bruke gravitasjonsmodellen på, blir ikke handel mellom to land sett på relativt til handel mot andre land. De mener at hvor mye to land handler med hverandre er påvirket av muligheten til å handle med andre land, og at denne effekten blir utelatt i den empiriske gravitasjonslitteraturen. For å rette på dette forholdet konstruerer de en variabel ”multilateral resistance” som er et mål på, ifølge dem, ”en passende gjennomsnittlig handelsbarriere”.

Enkelt og greit er det slik at handel mellom to land øker om deres handelsbarrierer blir mindre relativt til handelsbarrierer mellom dem og andre land. Dette er klart, men problemet er å implementere dette i en modell, hvordan kan vi måle barrierene? De videreutvikler gravitasjonsmodellen til Anderson (1979) som var basert på CES preferanser og differensierte goder mellom regioner. Anderson og Wincoop manipulerer CES forbrukssystemet for å utlede en operativ gravitasjonsmodell. På dette grunnlaget utleder de en dekomponering av handelsresistens i tre deler: (i) bilaterale handelsbarrierer mellom region i og j, (ii) i sin resistens mot handel med alle regioner, og (iii) j sin resistens mot handel med alle regioner. De antar at hver region er spesialisert i produksjonen av kun et gode og at tilbudet av hvert gode er fast.

10 I noen modeller blir “remoteness” variabeken inkludert, men denne tar kun høyde for avstanden relativt til andre handelspartnere. Og fanger dermed ikke opp noen av de andre handelsbarrierene.
Resultatene de får ved modellen er at grensen mellom USA og Canada reduserer handel mellom dem med 37% når de kun ser på disse to landene. Inkluderer de data fra andre land,11 blir handel redusert med 17% på grunn av nasjonale grenser.

Det er fire fordeler ved å bruke deres tilnærming.

(i) Modellen kan brukes til å utforske innflytelsen av valutaunioner blant et hvert sett av land, selv de som ikke har vært i en valutaunion. Dette er kritisk; uten en strukturell modell kan en tvile på relevansen av (pre-EMU) valutaunioner (som består av små eller fattige land) når en ser på innflytelsen av EMU.

(ii) Den gir et estimat på tariffekvivalens av den nasjonale monetære barrieren.

(iii) Modellen gir en eksplisitt velferdsmetrikk.

(iv) Og den kan lede til et mer nøyaktig estimat på effekten av valutaunioner på handel.12

Anderson og Wincoop finner i denne artikkelen at grenser betydelig reduserer bilateral handel på internasjonalt nivå. Resultater fra tidligere studier som gir enorme grenseeffekter, er mulig å forklare ved deres modell: (i) De vurderer effekten av grenser som en andel av intranasjonal mot internasjonal handel, (ii) denne grenseeffekten er stor for små land, og (iii) utelatte variabler gjør at den estimerte grenseeffekten blir positivt forventningsskjev.

\textbf{2.1.3 Rose og Wincoop (des. 2000)}

Rose og Wincoop bruker datasettet til Rose (2000), Men de benytter andre metoder for å finne den effekten valutaunioner har på handel. De mener at selv om det er kostnader forbundet med valutaunioner, vil gevinsten ved økt handel være så stor at land vil vinne på å ha felles valuta. Mange økonomer mener at gevinstene ved valutaunioner er lave. Rose og Wincoop argumenterer for at dette konvensjonelle synet kan være feil, siden det i dataen ser ut til at det å ha en egen nasjonalvaluta er en signifikant barriere mot internasjonal handel.

Som Rose gjør i 2000 (se ligning 3.1) estimerer de gravitasjonsligningen men de foretar noen få endringer:

11 I tillegg til USA og Canada inkluderer de Australia, Japan, New Zealand, Østerrike, Belgia-Luxembourg, Danmark, Finland, Frankrike, Tyskland, Hellas, Irland, Italia, Nederland, Norge, Portugal, Spania, Sverige, Sveits, og Storbritannia. De betrakter disse landene for resten av verden.

12 Hentet fra Rose and Wincoop (2000)
\[
\ln(\text{handel}_{ij}) = \beta_0 + \gamma \ln(\text{valuta})_{ij} + \beta_1 \ln(\text{avstand})_{ij} + \beta_2 \ln(\text{BNP})_{ij} + \beta_3 \ln(\text{landareal})_{ij} + \beta_4 \ln(\text{landareal})_{ij} + \beta_5 \ln(\text{BNP})_{ij} + \beta_6 \ln(\text{BNP})_{ij} / \ln(\text{Pop})_{ij} + \beta_7 \ln(\text{landareal})_{ij} + \beta_8 \ln(\text{landareal})_{ij} + \beta_9 \ln(\text{landareal})_{ij} + \beta_{10} \ln(\text{BNP})_{ij} + \beta_{11} \ln(\text{landareal})_{ij} + \epsilon_{ij}
\]

(2.2)

Hvor bilateral handel mellom land \(i \) og \(j \) er den avhengige variabelen. I regresjonen inkluderer de logaritmen av distansen (\(\ln(\text{avstand})_{ij} \)), logaritmen av produktet av reelt BNP (\(\ln(\text{BNP})_{ij} \)), logaritmen av produktet av BNP per capita (\(\ln(\text{BNP})_{ij} / \ln(\text{Pop})_{ij} \)), logaritmen av produktet av landarealen til land \(i \) og land \(j \) (\(\ln(\text{landareal})_{ij} \)). De inkluderer også flere dummyer for å kontrollere for andre effekter på handel. Dummyene de inkluderer indikerer om landene har: felles språk (\(f.\text{språk}_{ij} \)), felles grenser (\(f.\text{grense}_{ij} \)), handelsavtaler i periode \(t \) (\(f.\text{handelsavtale}_{ij} \)), om de har vært under samme koloni (\(f.\text{koloni}_{ij} \)), om et land har vært kolonien til den andre (\(f.\text{koloni}_{ij} \)), om de tilhører samme politiske union (\(f.\text{union}_{ij} \)), om enten \(i \) eller \(j \) (eller begge) er landfaste (\(f.\text{landfasthet}_{ij} \)) og til slutt en for felles valuta (\(f.\text{valuta}_{ij} \)) i periode \(t \).

Glick og Rose estimerer at handelsbarrierer assosiert med nasjonalegrenser er halvert når land deltar i valutaunioner, og gir en signifikant økning i velferd og handel. De finner at to land som bruker samme valuta handler nesten 300 % mer med hverandre enn andre land\(^{13}\). Men når de inkluderer landseffekter, lager en dummy for hvert land\(^{14}\) reduseres både signifikansen og effekten noe, men forblir fremdeles stor, ca 136 % \(^{15}\). De hevder at deres funn er konsistente med resultatet i Rose (2000) ved å vise til sensitivitetsanalysen Rose gjør. De argumenterer videre for at resultatene ikke er avhengig av hvordan ligningen er spesifisert eller estimert, eller avhengig av den spesielle måten variablene er målt.

Et velkjent problem innenfor økonometrien er muligheten for at faktorer som påvirker den avhengige variabelen ikke blir inkludert i regresjonen. Utelatte variabler kan gi forventningsskjevhet, og i verste fall vise at en variabel har påvirkningskraft når den i

\(^{13}\) Koeffisienten til valutaunion dummyen, \(\gamma \), tar verdien 1.38. For å beregne prosent av dette må jeg ta: ((exp 1.38)-1) *100. ((exp 1.38)-1) *100 =9.7 *100 =297. (ca 300 %)

\(^{14}\) Dette resulterer i svært mange variabler i regresjonen som kan skape problemer da de bruker opp mange frihetsgrader, det vil også være høy korrelasjon mellom de ulike variablene.

\(^{15}\) \(\gamma = 0.86, ((\exp 0.86)-1) *100 = 136 % \)

De prøver også en annen metode, hvor de benytter modellen fra Anderson og Wincoop (2000). Denne modellen er forklart i avsnitt 2.1.2. Ved å inkludere en dummy for hvert land kan de estimere effekten av en valutaunion blant ethvert sett av land uansett om de ikke har vært eller er i en valutaunion. I denne modellen blir effekten av valutaunioner lavere enn i den første uten CES funksjoner. Hva de gjør forklarer jeg kort nedenfor:

De antar at land spesialiserer produksjon og preferanser ved formen konstant substitusjonselastisitet, og definerer handel ved følgende ligning:

\[x_{ij} = \left(\frac{y_i y_j}{y^w} \right) \left(\frac{P_i P_j}{d_{ij}} \right)^{-\sigma} \]

(2.3)

Hvor \(x_{ij} \) er nominell verdi av eksport fra \(i \) til \(j \), \(y_i \) og \(y_j \) er henholdsvis nominell BNP for land \(i \) og land \(j \), \(y^w \) er nominell verdi av verdens produksjon, \(t_{ij} \) skal reflekterer de uobserverte handelskostnadene mellom \(i \) og \(j \), denne er en lineær funksjon av forholdet mellom distansen fra \(i \) til \(j \) og om det er en internasjonal grense mellom dem.\(^{16} \) \(P_i \) er \(i \) sin ”multilateral handelsresistens”, en prisindeks som positivt avhenger av handelsbarrierer mellom \(i \) og alle \(i \) sine handelspartnere (ikke bare \(j \)). \(\sigma \) er substitusjonselastisiteten mellom godene fra hvert land. Når de inkluderer multilateral handelsresistens variabelen er fremdeles effekten av valutaunioner stor, men mindre enn tidligere estimert. En tabell over effekten på handel for ulike eksisterende og tenkte valutaunioner finnes i appendiks, tabell A3. De finner her blant annet at om hele verden bruker samme valuta, vil internasjonal handel øke med 10 %, mens velferden vil øke med 21,3 %.

\[t_{ij} = b_{ij} d_{ij}^{\delta} \], hvor \(b_{ij} \) tar en i verdi om land \(i \) og \(j \) er i samme land, om de er i ulike land får \(b_{ij} \) en verdi (>1) som reflekterer handelsbarriermellom dem. \(d_{ij} \) er avstanden mellom \(i \) og \(j \).
2.1.4 Silviano Tenreyro (November 2001)

I “On The Causes and Consequences of Currency Union” finner Tenreyro en lavere effekt av felles valuta på handel enn de tidligere studiene jeg har referert til har funnet. Hun hevder at selvmønster, det at land selv bestemmer om de skal være med i en union eller ikke, skaper skjeve estimater.

Fordeler:
1) Eliminering av transaksjonskostnader for valuta og forstyrrelser i relative priser fra nominelle valutafluktuer.
2) Potensial til å disiplinere politikken, spesielt inflasjonsbekjempelse, så lenge ankerlandet er troverdig.
(Lavere transaksjonskostnader og bedre fremsyn oppmuntrer til dypere integrasjon i finansielle og ikke-finansielle markeder.)

Ulemper:
1) Tapet av uavhengighet ved lokale behov. Mindre tap for land med høy arbeidskraftmobilitet og land hvor økonomiske sjokk er høyt korrelet med andre sjokk,
2) Seignoragetap.
3) Tap av et nasjonalt symbol.

Tenreyro problematiserer det faktum at veldig mange valutaunionland er forskjellige. Når effekten av å bruke samme valuta er ulik blant grupper eller når det ikke er linearitet i handelsrelasjonene som blir ignoreret, vil en systematisk differensiering i karakterisering av land, skape forventningsskjeve estimater. I tillegg, nevner hun to andre økonometriske bekymringer med MKM estimatene. Den ene er utelatte variabler, og den andre er utvalgsseleksjon. Med det siste tenker hun på de observasjonene som blir utelatt på grunn av at de har null i handelsverdi.17 Disse blir vanligvis utelatt siden det ikke er mulig å ta logaritmen av null. Tenreyro løser disse problemene ved å bruke empirisk estimering over

17 Dette problemet diskuterer også Frankel (1997), og han konkluderer med at det ikke gir betydelige forskjeller ved å inkludere nullverdiene eller ikke.

Hun presiserer to viktige resultater:

1) Når de observasjonene hvor bilateral handel er null blir inkludert i estimeringen, faller effekten fra ca 200 % til ca 100 % når en tar hensyn til at noen land ikke handler med hverandre i enkelte perioder.

2) Kraften av valutaunion faller når endogenseleksjon er tatt hensyn til. Da er effekten av en felles valuta under 60 %. Men dette er ikke signifikant forskjellig fra null, som da kan indikere at påvirkningen av valutaunioner kanskje ikke er så stor og robust som rapportert i tidligere studier.

2.1.5 Glick og Rose (2002)

2.1.6 Julie Lochard (2005)

Kapittel 3 Presentasjon av datamaterialet

"Gravitasjonsmodellen har lenge vært den stygge andunden i internasjonal økonomi, med et innviklet og lite respektert teoretisk grunnlag. Men den har i senere tid opplevd en svaneliknende forvandling. Det er minst tre grunner til denne forvandlingen: (i) Dens empiriske suksess i å predikere bilaterale handelsstrømmer, (ii) et forbedret teoretisk fundament, som kommer i hovedsak fra moderne teorier om handel med imperfekte substitutter og (iii) en ny interesse blant økonomer for emne om geografi og handel, der en heller vilhandle land eller regioner som fysiske plasser i bestemte lokasjoner, enn se på dem som et hode uten kropp.”

"Gravitasjonsmodellen, i sin basiske form, sier at handel mellom land i og land j er proporsjonal til produktet av BNP$_i$ og BNP$_j$ og er invers relatert til avstanden mellom dem. Andre forklarende variabler som ofte er inkludert er andre mål på størrelser, som populasjon, BNP per capita, landareal, og dummy variabler som representerer andre mål på geografiske eller kulturelle bånd som landfasthet, felles grenser, felles språk og felles handelsavtaler.”

For å estimere gravitasjonsmodellen er det fult mulig å bruke vanlig tverrsnittanalyse og minste kvadratiske metode, MKM. Så lenge variabler som har påvirkningskraft ikke blir utelatt, så vil en få forventningsrette estimat. Jeg vil senere i oppgaven vise at det tyder på at modellene har utelatte variabler. Et annet problem er at noen av forklaringsvariablene kan korrelere med feilbedd.

18 Frankel, 1997, kap 4 side 49.
19 IBID side 50
For å løse det første problemet vil jeg i kapittel 4 se om det er mulig å finne flere variabler som kan inkluderes i modellen. En løsning på det andre problemet kan være instrument variabel, IV, estimering. Men da gjelder det å finne gode instrument, noe som dessverre viser seg å være vanskelig.

Jeg vil i 3.1.1 og 3.1.2 presentere datasettet som Rose benytter i arbeidet med ”One Money One Market”, videre i 3.1.3 vil jeg prøve å analysere estimeringsmetodene hans, samt presentere resultatene. I del 3.2 bruker jeg samme fremgangsmåte for datasettet fra artikken “Does a Currency affect Trade? The Time Series Evidence”.

3.1 "One Money One Market", Rose (2000)

3.1.1 beskrivelse av datasettet
Andrew K. Rose skrev denne artikkenen i år 2000 og var revolusjonerende i sin tanke ved å inkludere en variabel som kontrollerer for om to land har felles valuta eller ikke. Det er flere studier på valutakursvolatilitetens påvirkning på handel, men aldri tidligere har noen brukt en variabel som kun kontrollerer for effekten av felles valuta mellom to land.

Rose bruker, som nevnt, gravitasjonsmodellen, og har bilateral handel mellom landpar, i og j som avhengig variabel. Regresjonen han estimerer er som følger:

\[\ln(\text{handel}_{ijt}) = \beta_0 + \phi_{\text{felles valuta}}_{ijt} + \delta_{\text{valutakursvolatilitet}}_{ijt} + \beta_{\ln(BNP_i, BNP_j)}_{ijt} + \beta_1 \ln(\text{BNP}_i, \text{BNP}_j)_{ijt} + \beta_2 \ln(\text{BNP}_i, \text{BNP}_j/\text{Pop}_i, \text{Pop}_j)_{ijt} + \beta_3 \ln(\text{avstand})_{ijt} + \beta_4 \text{grense}_{ijt} + \beta_5 \text{språk}_{ijt} + \beta_6 \text{handelsavtale}_{ijt} + \beta_7 \text{land}_{ijt} + \beta_8 \text{koloni}_{ijt} + \beta_9 \text{koloni} + \epsilon_{ijt} \]

(3.1)

Som avhengig variabel har han bilateral handel mellom land i og j på logaritmeform (\(\ln(\text{handel}_{ijt}) \)). I regresjonen inkluderer han: En dummy for felles valuta (felles valuta\(_{ijt}\)), en
variable som gir et mål på effekten av den bilaterale nominelle valutakursvolatiliteten (\(\text{valutakursvolatiliteit}_{ij}\)). Han inkluderer også logaritmen av produktet av reelt BNP (\(\ln(BNP_i\cdot BNP_j)\)), logaritmen av produktet av reelt BNP per innbygger (\(\ln(BNP_i\cdot BNP_j/Pop_i\cdot Pop_j)\)) og logaritmen av avstand mellom land \(i\) og \(j\) (\(\ln(\text{avstand}_{ij})\)). Videre kontrollerer han for mange andre faktorer som kan påvirke verdien av den bilaterale handelen mellom to land. Han gjør dett ved å inkludere dummy variabler som kontrollerer for om land \(i\) og \(j\) grenser mot hverandre (\(f\cdot\text{grense}_{ij}\)), har felles språk (\(f\cdot\text{språk}_{ij}\)), har felles handelsavtale (\(f\cdot\text{handelsavtale}_{ij}\)), er en del av samme nasjon (\(f\cdot\text{land}_{ij}\)), har vært under samme kolonimakt etter 1945 (\(f\cdot\text{koloni}_{ij}\)) og om et av landene var en koloni under det andre (\(f\cdot\text{koloni}_{ij}\)).

Handelsdata er hentet fra World Trade Database. Denne skal dekke 98 % av all handel, men det er vanskelig å vite om dataene inneholder både eksport av varer og tjenester, eller bare varer. For å beregne den bilaterale handelsverdien tar Rose gjennomsnittet av eksportverdiene fra land \(i\) til land \(j\) og verdien av eksport fra land \(j\) til \(i\). De nominelle verdiene, som er oppgitt i tusen (amerikanske dollar), deflaterer han med USAs prisindeks for BNP. Reel BNP- og populasjonsverdier henter han fra Penn World Table 5.6. Distansen beregner han ved ”Great Circle distance and contiguity” (fra Central Intelligence Agency, CIA, sin web-side). Her henter han også informasjon om språk og kolonihistorie. Fra World Trade Organization, WTO, sin web-side finner han fakta om ulike handelsavtaler.

For å måle volatiliteten til valutakursen mellom to land, estimerer han standardavviket av første differansen av den månedlige naturlige logaritmen av den bilaterale nominelle valutakursen i den foregående femårs perioden \(t\). Det er også mulig å bruke reel valutakurs. Dette har han ikke gjort, men korrelasjonen mellom nominell og reel valutakurs er stor bortsett fra land med høy inflasjon, slik at dette ikke gir noen betydelige forskjeller.

Jeg vil diskutere i 3.1.3 om det er et endogenitetsproblem i modell (3.1). Teknisk er dette et brudd på et av Gauss-Markov antagelsene, som sier at de forklarende variablene, \(x\), ikke skal være korrelert med feilledet, \(u\):

\[
E(u|x_1, x_2, \ldots, x_k) = 0
\]
(3.2)
Ved et endogenitetsproblem vil de estimerte koeffisientene være forventningsskjeve. Om det er slik at felles valutavariabelen er korrelert med feilveddel, så er det mulig, ved IV estimering, å bruke en eller flere instrument for felles valuta. Det som er viktig da, er at disse instrumentene korrelerer med felles valutavariabelen, men ikke korrelerer med feillet. Datasettet inneholder mange flere variabler enn hva som er inkludert i regresjonen. Det er dermed mulig å finne instrument for felles valutavariabelen. Av de inkluderte variablene kan for eksempel ulike mål på inflasjon, pengemengdevekst og landareal, være av interesse.

Noe av sensitivitetsanalysen Rose gjør, er nettopp IV estimering. Dette vil bli mer diskutert i 3.1.3.

3.1.2 Kan den store effekten skyldes feil i dataoppsettet?

Hva er et typisk ”felles valuta land”

Om vi kaller valutasamarbeid mellom et nav- og et eikeland for en type valutaunion så kan vi karakterisere to til. Det vil da være et samarbeid som EMU. Hvor både valutaen og sentralbanken er felles. Andre slike valutaunioner er ”the West African arrangement”, CFA. Og ”the Caribbean arrangement”, ECCA. En tredje type vil være valutaunioner som består av små særegne valutaunionpar som ofte inneholder svært lokalt samarbeid som Sveits og Liechtenstein, eller Italia og San Marino. Når Rose karakteriserer disse som like, vil kanskje

20 ”knutepunkt”
21 ”spiler som er alle forbundet med samme knutepunkt” en kan tenke seg et sykkelhjul hvor knutepunktet er i midten (hub) og spiler som springer ut fra dette knutepunktet (spoke).
22 Baldwin, mai 2005
effekten domineres av en type valutasamarbeid. Dette sjekker han i sin sensitivitetsanalyse. Hvor han finner at dette ikke er tilfelle.

Verdien av bilateral handel

Baldwin (2005) kritiserer Rose for hvordan han beregner bilateral handel. Rose bruker et aritmetisk gjennomsnitt hvor han summerer eksport fra land i til land j og eksport fra land j til land i. La x_{ij} være eksport fra i til j, og x_{ji} eksport fra j til i. Da finner Rose den bilaterale verdien ved:

Aritmetisk gjennomsnitt:
\[
\ln \text{handel} = \ln \left(\frac{x_{ij} + x_{ji}}{2} \right)
\]

Om handelen mellom land i og land j er balansert er ikke dette et problem. Men om det ikke er balanse i handelen vil et aritmetisk og geometrisk gjennomsnitt gi ulike verdier:

Geometrisk gjennomsnitt:
\[
\ln \text{handel} = \frac{\ln x_{ij} + \ln x_{ji}}{2}
\]

Jeg kan vise dette ved et eksempel:

Anta eksport verdien fra land i til land j er $2,5$ mill., omformet til logaritme får vi: $\ln 2,5$ mill. = 14,73. Anta videre at land j eksporterer vesentlig mindre til land i, si 250 som gir $\ln 250 = 5,52$. Et geometrisk gjennomsnitt av eksportverdiene er da $(14,23 + 5,52) / 2 = 10,125$.

Rose finner aritmetisk gjennomsnitt for å bestemme den bilaterale handelen:

\[
\ln [(250 0000 + 250) / 2] = 14,04
\]

De to verdiene for bilateral handel er ulik ved de to måtene å finne gjennomsnittet, når det ikke er balanse i handelen mellom to land. Baldwin (2005) mener Rose sin fremgangsmåte vil overestimere effektene på handel. Denne skjevheten i eksport er typisk for såkalte "nav- og eikeland". Om et navland eksporterer mye til et lite land og dette landet har liten eksport i retur, så vil ikke skjevheten bli tatt hensyn til ved Rose sin estimering. Da vil det være (positivt) forventningsskjeve estimat, selv om han ekskluderer intraeikeland handel fra regresjonen, noe som han gjør i tabell 2 i "One Money One Market". Men igjen så vil også all bilateral handel være beregnet på denne måten, og dermed vil denne verdien også være kunstig høy for andre land som ikke har balanse i handelen og som ikke er i et valutasamarbeid. Hva som er riktig fremgangsmåte er ikke lett å bestemme. Så lenge alle handelsverdiene er kalkulert på lik måte vil ikke jeg problematisere dette noe videre.
Utvalget
Ikke alle land handler med hverandre. Dermed er det flere landpar hvor den bilaterale handelsverdien er lik null. Disse observasjonene blir utelatt fra datasettet. Det blir med andre ord ikke tatt hensyn til at enkelte land ikke handler med hverandre. Dette kan resultere i at effekten av valutaunioner på handel blir overestimert. Et annet problem, som er tilfelle ved Glick og Rose datasettet, er at noen landpar har liten handel, slik at den bilaterale handelen er tilnærmet lik null.

Både null verdier og tilnærmet lik null verdier gir problemer for økonometriske resultater. Dette er pga at det ikke er mulig å ta logaritmen av null, samt vil logaritmen av et lite tall (< 1) gi negative verdier. Frankel (1997) nevner tre muligheter for å løse problemet ved nullverdier:

3. Benytte Tobit estimeringsmetode. Tobit er en teknikk som estimerer separate parametre for å bestemme om en observasjon er ikkennull, og så for å estimere hva koeffisientene er, betinget på at observasjonen er ikkennull. Men ved en slik metode må den avhengige variabelen, bilateral handel, utrykkes i nivåer heller enn logaritmer.

Frankel (1997) diskuterer problemet ved nullverdier. Han har et utvalg av 63 land, og tester de ulike måtene for å kontrollere for nullverdiene. Han konkluderer at å inkludere nullverdiene, ved hjelp av metodene beskrevet ovenfor, endrer ikke resultatene seg noe vesentlig. Det gir dermed ikke noen betydelig forventningsskjeve fordeling ved å utelate disse fra regresjonen slik som Rose gjør.

*23 Dette viser seg i liten grad i Glick og Rose datasettet, hvor negative handelsverdier er inkludert
24 Dette gjør Rose i sin sensitivitetsanalyse.
I alt består utvalget til Rose av 330 observasjoner hvor land har felles valuta. Når modell (3.1) estimeres faller 78 av disse bort. Det resulterer i at estimatene består av 252 observasjoner hvor landpar er i valutaunion og resten, 22 696, av observasjonene er landpar med ulik valuta.

Grunnen til at 78 av disse faller bort, er at det mangler BNP verdier for et eller for begge land. Det er da diskutabelt om 252 av 22696 observasjoner er representativt for å kunne stole på resultatene.

Gravitasjonsmodellen

Rose har en variabel *remote* i datasettet sitt. Denne er definert som den inverse av BNP vektet distanse.

\[
remote_i = \frac{1}{\sum_{m \neq j} \frac{d_{im}}{y_m}}
\]

\[\text{(3.3)}\]

Her er, \(d_{im}\), avstanden mellom land \(i\) og alle land \(m\) dividert på inntekten, \(y_m\), til land \(m\). Dette relative forholdet summeres for alle land utenom land \(j\).

Denne er noe ulik variabelen *remoteness*, som Anderson og Wincoop (2000) diskuterer. De inkluderer forholdet \(REM_i = \sum_{m \neq j} \frac{d_{im}}{y_m}\), men finner at denne ikke har påvirkningskraft i gravitasjonsmodellen\(^{27}\).

\(^{25}\) Eks. Australia- New Zealand hvor avstanden mellom dem er stor, men avstanden er ikke relativt stor i forhold til avstanden mellom dem og andre land.

\(^{26}\) Eks. Nederland – Tyskland i forhold til andre naboland av Europa

\(^{27}\) Se 2.1.2
Vi har altså nå to ulike mål på relativ avstand: Remoteness, som vekter avstanden mellom land på inntekt. Om utvalget består av fjerne (høy \(d_{lm} \)) og små (lav \(y_{lm} \)) land vil en slik definering gjøre at remoteness blir svært høy. Rose bruker den inverse av dette forholdet, han definerer med andre ord remote som den inverse av BNP vektet distanse, se ligning (3.3). Når han tar den inverse av dette forholdet, blir størrelsen på fjerne land irrelevant. Rose har ikke inkludert denne i hovedmodellen sin, men i sensitivitetsanalysen sin. Anderson og Wincoop (2000) konkluderer at denne variabelen ikke har forklaringskraft i gravitasjonsmodellen. De konstruerer en multilateral resistens variabel, denne er forklart i 2.1.2.

I kapittel 4 inkluderer jeg ulike variabler i modellen, deriblant remote variabelen.

Sammenslåing av data; ”pooling”

Rose bruker i sitt datasett verdier for hvert femte år, 70, 75, 80, 85 og 90. Først ser han på disse periodene separat. Men hovedargumentasjonen hans er fra en sammenslått MKM estimering hvor da hele perioden blir inkludert (1970 – 1990). Han kontrollerer for tidseffektene ved å inkludere dummyvariabler for fire av periodene; \(y_{75} \), \(y_{80} \), \(y_{85} \) og \(y_{90} \) i regresjonen.\(^{28}\) Resultatene fra disse regresjonene er lagt ved i appendiks (tabell A1). Frankel (1997) diskuterer effekten av handelsavtaler på bilateral handel. Han bruker også en sammenslått MKM estimering. Siden han bruker denne metoden kan han ta hensyn til at effektene av en ny handelsavtale ikke nødvendigvis viser seg i samme år som den er inngått. På grunn av stor variasjon i handelsdata, som skyldes variasjonen over tid i handelspolitikk og deres effekter, er det ikke sikkert at handelen endrer seg i det øyeblikket en avtale blir inngått. Ved å slå sammen dataen når en ser på tidsserier eller tverrsnittanalyse, kan variasjonen jevnes ut.

\(^{28}\) 1970 er referanseåret.

\(^{29}\) En variabel hvor verdien av en variabel settes en eller flere perioder tilbake.
Feilleddet i regresjonen
Rose antar feilleddet i modellen oppfører seg bra ("to be well behaved"). Ved en MKM estimeringsmetode må forventningen til feilleddet være lik null, $E[\varepsilon] = 0$. Om den ikke er det, kan det være at faktorer som påvirker handel ikke er inkludert i modellen. Da vil estimatene bli forventningsskjeve. I 3.1.3 undersøker jeg om modellen har utelatte variabler ved ovtest kommandoen.

3.1.3 Metode og resultater, "One Money One Market"
Rose finner i sitt arbeid at to land i en valutaunion handler tre ganger mer med hverandre enn land utenfor en union. Han poengterer at vi ikke skal ta denne verdien bokstavlig, men at resultatene hans beviser at valutaunioner gir positiv effekt på handel mellom medlemslandene. For å underbygge dette resultatet, bruker han en stor mengde sensitivitetsanalyse, hvor han blant annet forsøker å inkludere andre typer variabler, ekskludere ulike grupper av land og IV estimering. De fleste estimatene fra denne sensitivitetsanalysen viser at effekten er positiv.

Jeg nevnte i begynnelsen av kapittel 3 at det er antatt mulig å bruke tverrsnittsanalyse ved estimering av gravitasjonsmodellen, men dette er så lenge en ikke har utelatte variabler og multikollinearitet.31

30 Ramsey regression spesifikasjonstest for feilleddet (RESET) for utelatte variabler.
31 To eller flere forklarende variabler som er perfekt korrelert.
Hva kan påvirke handel mellom to land? Hvorfor inkluderer han de ulike variablene?
Jeg har innledningsvis nevnt isbergmodellen, som gir et bilde av hvordan verdien på handel faller jo lenger varene må reise. Rose bruker logaritmen av distansen mellom land i og j, for å kontrollere for denne negative effekten. En antar at verdien av import til et land er gitt av en fast andel av BNP, importtilbøyelighet. Dermed vil handel øke med økt BNP. Han inkluderer både logaritmen av produktet av BNP i land i og j, samt logaritmen av produktet av BNP per innbygger. Begge forventes å gi positive effekter på handel.

Datasettet Rose brukte i arbeidet med "One Money One Market" er tilgjengelig på internett, slik at jeg har kunnet reproduere hva han har gjort. En del feil ved datasettet hans er blitt påpekt i etterkant av utgivelsen\(^{33}\), men disse har jeg rettet. Derfor er noen av koeffisientene jeg finner noe ulik tabell 1 i Rose (2000)\(^{34}\). Nedenfor følger en tabell som viser hva Rose estimerer, men med rettet datasett.

\(^{33}\) "Errors in Bilateral Data Sets" http://faculty.haas.berkeley.edu/arose/Error.html

\(^{34}\) Finnes også i appendiks, tabell A1.
Tabell 3.1. Effekt på bilateral handel, ligning 3.1. MKM estimering

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felles valuta, γ</td>
<td>0,85*</td>
<td>1,3</td>
<td>1,1</td>
<td>1,37</td>
<td>1,53</td>
<td>1,198</td>
</tr>
<tr>
<td></td>
<td>(0,43)</td>
<td>(0,41)</td>
<td>(0,26)</td>
<td>(0,27)</td>
<td>(0,27)</td>
<td>(0,14)</td>
</tr>
<tr>
<td>Valutakurs volatilitet, δ</td>
<td>-0,062</td>
<td>-0,001</td>
<td>-0,06</td>
<td>-0,03</td>
<td>-0,009</td>
<td>-0,17</td>
</tr>
<tr>
<td></td>
<td>(0,01)</td>
<td>(0,01)**</td>
<td>(0,01)</td>
<td>(0,005)</td>
<td>(0,002)</td>
<td>(0,002)</td>
</tr>
<tr>
<td>BNP, β_1</td>
<td>0,77</td>
<td>0,81</td>
<td>0,81</td>
<td>0,8</td>
<td>0,82</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>(0,16)</td>
<td>(0,01)</td>
<td>(0,01)</td>
<td>(0,01)</td>
<td>(0,01)</td>
<td>(0,006)</td>
</tr>
<tr>
<td>BNP per capita, β_2</td>
<td>0,65</td>
<td>0,66</td>
<td>0,61</td>
<td>0,66</td>
<td>0,73</td>
<td>0,66</td>
</tr>
<tr>
<td></td>
<td>(0,03)</td>
<td>(0,03)</td>
<td>(0,02)</td>
<td>(0,02)</td>
<td>(0,02)</td>
<td>(0,01)</td>
</tr>
<tr>
<td>Avstand, β_3</td>
<td>-1,09</td>
<td>-1,15</td>
<td>-1,02</td>
<td>-1,04</td>
<td>-1,12</td>
<td>-1,09</td>
</tr>
<tr>
<td></td>
<td>(0,05)</td>
<td>(0,04)</td>
<td>(0,04)</td>
<td>(0,04)</td>
<td>(0,04)</td>
<td>(0,19)</td>
</tr>
<tr>
<td>F. grense, β_4</td>
<td>0,48*</td>
<td>0,36</td>
<td>0,73</td>
<td>0,52</td>
<td>0,64</td>
<td>0,54</td>
</tr>
<tr>
<td></td>
<td>(0,21)</td>
<td>(0,19)</td>
<td>(0,18)</td>
<td>(0,18)</td>
<td>(0,18)</td>
<td>(0,08)</td>
</tr>
<tr>
<td>F. språk, β_5</td>
<td>0,56</td>
<td>0,37</td>
<td>0,29</td>
<td>0,37</td>
<td>0,5</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>(0,1)</td>
<td>(0,1)</td>
<td>(0,09)</td>
<td>(0,08)</td>
<td>(0,08)</td>
<td>(0,04)</td>
</tr>
<tr>
<td>F. handelsavtale, β_6</td>
<td>0,81</td>
<td>0,94</td>
<td>1,22</td>
<td>1,17</td>
<td>0,63</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>(0,16)</td>
<td>(0,22)</td>
<td>(0,17)</td>
<td>(0,17)</td>
<td>(0,15)</td>
<td>(0,08)</td>
</tr>
<tr>
<td>F. land, β_7</td>
<td>1,71*</td>
<td>1,4*</td>
<td>1,06*</td>
<td>1,76</td>
<td>0,86</td>
<td>1,46</td>
</tr>
<tr>
<td></td>
<td>(0,71)</td>
<td>(0,67)</td>
<td>(0,46)</td>
<td>(0,65)</td>
<td>(0,52)</td>
<td>(0,28)</td>
</tr>
<tr>
<td>F. koloni, β_8</td>
<td>0,91</td>
<td>0,73*</td>
<td>0,53</td>
<td>0,48</td>
<td>0,59</td>
<td>0,63</td>
</tr>
<tr>
<td></td>
<td>(0,15)</td>
<td>(0,14)</td>
<td>(0,12)</td>
<td>(0,12)</td>
<td>(0,12)</td>
<td>(0,059)</td>
</tr>
<tr>
<td>Koloni, β_9</td>
<td>2,44</td>
<td>2,43</td>
<td>2,31</td>
<td>2,06</td>
<td>1,76</td>
<td>2,21</td>
</tr>
<tr>
<td></td>
<td>(0,23)</td>
<td>(0,13)</td>
<td>(0,13)</td>
<td>(0,15)</td>
<td>(0,074)</td>
<td></td>
</tr>
<tr>
<td>y75</td>
<td>-0,17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y80</td>
<td>-0,55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y85</td>
<td>-1,29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y90</td>
<td>-1,46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antall observasjoner</td>
<td>4052</td>
<td>4474</td>
<td>5092</td>
<td>5091</td>
<td>4239</td>
<td>22948</td>
</tr>
<tr>
<td>R^2</td>
<td>0,57</td>
<td>0,59</td>
<td>0,62</td>
<td>0,64</td>
<td>0,72</td>
<td>0,63</td>
</tr>
<tr>
<td>RMSE</td>
<td>2,18</td>
<td>2,18</td>
<td>2,03</td>
<td>1,94</td>
<td>1,75</td>
<td>2,02</td>
</tr>
<tr>
<td>Konstantledd</td>
<td>-18,13</td>
<td>-19,4</td>
<td>-19,7</td>
<td>-20,78</td>
<td>-22,54</td>
<td>-19,29</td>
</tr>
</tbody>
</table>

Robust standardavvik i parentes.

* Ikke signifikant på 1 % nivå, men på 5 %.

** Ikke signifikant.
Resultater

Da jeg rettet opp i disse, ble estimatene noe ulik Rose sine, men der er ingen betydelige forskjeller. For eksempel er effekten av valutaunioner på handel, når alle periodene er inkludert, lik 1.198 (Rose fant denne til å være lik 1,21) som vil si at om to land er i en valutaunion er verdien av deres handel 231.3 % (mens en koeffisient lik 1,21 blir 235,3 %) større enn om de ikke hadde hatt felles valuta.

Høyere volatilitet i valutakursen fører til redusert handel mellom to land. En prosents økning i produktet av BNP mellom to land gir 0,8 % prosentsøkning i den bilaterale handelen. Større avstand viser å redusere handel, mens det at to land deler grense, har felles språk, er innenfor samme handelsavtale, hører til samme land eller har felles kolonihistorie øker den bilaterale handelen.

I tabellen er robust standardavvik rapportert i parentes. En bruker robust estimering for å kontrollere for heteroskedastisitet. Når det er et problem med heteroskedastisitet, er den femte Gauss- Markov antakelsen brutt;

\[\text{Var} (u|x_1, x_2, \ldots, x_k) = \sigma^2 \]
(3.4)

Problemer med den femte antakelsen (at variansen til feilleddet betinget på de forklarende variablene skal være konstant): gir ikke skjevhet eller inkonsistente estimat. R^2 blir ikke påvirket, men variansen til de predikerte estimatene blir forventningsskjeve. Slik at t verdier, standardavvik og dermed konfidens intervallene ikke lenger blir gyldige. Dermed vil ikke den

35 Jeg vet da at jeg har brukt lik fremgangsmåte som han.

Det er mulig å redusere heteroskedastisitetsproblemet ved å bruke logaritmeform på den avhengige variabelen, slik som i modell (3.1). Men The Breusch – Pagan testen viser at det fremdeles er et problem med heteroskedastisitet. Denne tester hypotesen om feilleddet har konstant varians, altså \(H_0 \) = konstant varians til feilleddet. Om vi forkaster denne, antar vi at vi har et heteroskedastisitetsproblem. Når jeg tester alle seks regresjonene i tabell 3.1 finner jeg \(\text{Chi}^2 \) verdier fra 270.22 til 1837.04 (resultatene fra denne testen er ikke rapportert i en tabell). Slik at null hypotesene (som antar at feilleddet har konstant varians) kan forkastes. Dermed er det et problem med heteroskedastisitet.

En annen mulighet for å løse heteroskedastisitetsproblemet er å gjøre robuste estimeringer. Ved å sette robust kommandoen i slutt av regresjonen, beregner STATA robuste standardavvik, som er asymptotiske forventningsrette. Både Rose og jeg bruker robust estimering.

Modellen har høy forklaringsverdi, det ser vi ut i fra \(R^2 \). Denne er høy for alle seks regresjonene, fra 0,57 til 0,72. De fleste estimatene er også signifikant forskjellig fra null gjennom hele perioden, og i den siste regresjonen er alle variablene signifikante.

I og med at mengden av handel har steget i løpet av historien (tidstrend) må det kontrolleres for dette når alle fem periodene inkluderes i modellen. Han lager da fire nye dummyvariabler y75, y80, y85 og y90, hvor 1970 er basisåret i regresjonen. Mange dummy variabler er inkludert i modellen. Når den avhengige variabelen er på logaritmeform, finner vi effekten av variabelen i prosent ved:

\[
(\exp(\delta_k) - 1) \times 100
\]

(3.5)

Hvor \(\delta_k \) er koeffisienten til dummyvariabel \(k \).

Når vi ser på en og en fem års periode varierer koeffisienten til felles valuta fra 0,85 (\(\exp 0,85 = 2,34 \) (= 134 %)) til 1,53 (\(\exp 1,53 = 4,62 \) (= 362 %)). Når alle periodene blir slått sammen

\[^{36} f. \text{valuta}, f. \text{grense}, f. \text{språk}, f. \text{handelsavtale}, f. \text{land}, f. \text{koloni og kolonil.} \]
så er effekten lik 1,198 (exp 1.198 = 3,31) (=231 %). Det er sistnevnte resultat som presenteres i "One Money One Market" som effekten av valutaunioner på bilateral handel.

Tabell 3.2. Gjennomsnittsverdi av bilateral handel, for de ulike periodene, samt sammenslått periode.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gjennomsnittlig verdi (log)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970</td>
<td>9.22</td>
<td>9.41</td>
<td>9.38</td>
<td>8.82</td>
<td>8.74</td>
<td>9.1</td>
</tr>
<tr>
<td>Antall observasjoner</td>
<td>5873</td>
<td>6559</td>
<td>7162</td>
<td>6936</td>
<td>7373</td>
<td>33903</td>
</tr>
</tbody>
</table>

Rose gjør i tillegg ulike endringer i modellen sin for å bevise resultatet sitt. Blant annet kjører han en regresjon hvor han ekskluderer all handel mellom utviklingsland for å se om effekten av felles valuta er et rent utviklingsland fenomen. Han finner da en koeffisient lik 1,85. Denne tilsier at handel øker med 536 % om land har felles valuta eller ikke. En enorm effekt igjen,
men her er kun 36 observasjoner hvor to land er i valutaunion, slik at jeg bør være forsiktig med å stole på dette resultatet.

En annen regresjon ekskluderer navlandene, Australia, Frankrike, New Zealand, UK og USA. Her finner han en koeffisient lik 1,04, som tilsier en effekt på 183 %. Rose har to tabeller hvor han rapporterer resultater hvor enkelte land blir ekskludert. I tillegg til det som er nevnt ovenfor ser han på hva som skjer om han ekskluderer fattige land eller små land etc. Jeg kan oppsummere disse to tabellene ut i fra koeffisientene og antall observasjoner hvor land er i valutaunion: De fleste av observasjonene hvor landene har felles valuta er afrikanske, mer enn 200 av 330. Og de fleste er utviklingsland, samt viser estimeringen når land med mindre enn 1 million innbyggere blir utelatt, at ca 1/3 av observasjonene hvor landene har felles valuta er små.

Videre prøver han å finne utelatte variabler, relativ avstand, remote, og ulike variabler som indikerer forskjellige mål på avstand, areal, landfasthet og BNP. Han tester og resultatene sine ved mange ulike estimeringsmetoder, som, Tobit, vektet minste kvadratsum, tilfeldig effekt og maksimum likelihood. Fremdeles viser resultatene hans en positiv effekt på handel. En interessant fremgangsmåte er å se om veksten i handel er større for valutaunionland enn for andre. Her finner han at bilateral handel har økt 16 % mer per år enn hva den har økt for andre landpar. Til slutt bruker han instrument variabelestimering. Han finner instrument for både valutakursvolatiliteten og felles valuta, benytter seg av ulike mål på inflasjon og pengemengdevekst, men konkluderer at det ikke er enkelt å finne gode instrument. Han tester ved hjelp av en standard Hausman test om både felles valuta og valutakursvolatilitet er samtidig eksogene, samt om kun felles valuta er eksogen. Denne påstanden kan ikke bli forkastet på 5 % signifikansnivå men forkastes på 1 %. Sensitivitetsanalysen til Rose beviser effekten av valutaunioner han finner i modellen sin. Effekten varierer noe, men er aldri negativ. Derfor konkluderer han ved at om to land har felles valuta gir dette en stor positiv effekt på bilateral handel.

Det er mulig å teste om modellen har utelatte variabler. Jeg kjørte en ovtest som tester for utelatte variabler. Denne gjør en Ramsey regression spesifisasjonstest for feilleddet (RESET) for utelatte variabler, ved å bruke ”kraft” fra predikert y. H₀ er her at det ikke er utelatte

37 Her er det 252 observasjoner hvor landparene er medlem av samme valutaunion.
faktorer i modellen. Denne blir forkastet, slik at vi kan konkludere med at det er flere faktorer som forklarer bilateral handel enn hva som er inkludert. (Se tabell 3). Jeg testet dette også ved en ovtest, rhs, som bruker "kraft" fra forklarende variabler i stedet for kraft fra predikert y. Her blir også H₀ forkastet.

Korrelasjonen mellom de uavhengige variablene er ikke spesielt høy for noen av variabelparene. Men en test som kalkulerer varians inflasjonsfaktorer for å sjekke for multikollinearitet, viser at det er et problem med multikollinearitet i modellen. Denne testen er rapportert i høyre kolonne i tabell 3.3

Tabell 3.3. Test for utelatte variabler og multikollinearitet

<table>
<thead>
<tr>
<th>Test</th>
<th>variabel</th>
<th>VIF</th>
<th>1/VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovtest</td>
<td>y90</td>
<td>1,94</td>
<td>0,5156</td>
</tr>
<tr>
<td></td>
<td>y85</td>
<td>1,84</td>
<td>0,5442</td>
</tr>
<tr>
<td></td>
<td>y80</td>
<td>1,80</td>
<td>0,5560</td>
</tr>
<tr>
<td></td>
<td>y75</td>
<td>1,71</td>
<td>0,5858</td>
</tr>
<tr>
<td></td>
<td>avstand</td>
<td>1,39</td>
<td>0,7179</td>
</tr>
<tr>
<td></td>
<td>BNP</td>
<td>1,34</td>
<td>0,7455</td>
</tr>
<tr>
<td></td>
<td>Felles koloni</td>
<td>1,28</td>
<td>0,7792</td>
</tr>
<tr>
<td></td>
<td>BNP per cap.</td>
<td>1,27</td>
<td>0,7891</td>
</tr>
<tr>
<td></td>
<td>Felles valuta</td>
<td>1,23</td>
<td>0,8114</td>
</tr>
<tr>
<td></td>
<td>Felles språk</td>
<td>1,22</td>
<td>0,8209</td>
</tr>
<tr>
<td></td>
<td>F. handelsavtale</td>
<td>1,20</td>
<td>0,8357</td>
</tr>
<tr>
<td></td>
<td>v. volatilitet</td>
<td>1,19</td>
<td>0,8419</td>
</tr>
<tr>
<td></td>
<td>F. grense</td>
<td>1,19</td>
<td>0,8430</td>
</tr>
<tr>
<td></td>
<td>F. land</td>
<td>1,13</td>
<td>0,8829</td>
</tr>
<tr>
<td></td>
<td>Koloni</td>
<td>1,07</td>
<td>0,9311</td>
</tr>
<tr>
<td></td>
<td>Gjennomsnitt</td>
<td>1,39</td>
<td></td>
</tr>
</tbody>
</table>

1/VIF kolonnen i tabellen gir verdier lik 1-R² fra regresjonen for hver uavhengig variabel, x, på de andre x variablene. Altså, 1/VIF (eller 1-R²) forteller oss til hvilken grad variansen til en x variabel er uavhengig av alle de andre x variablene. Noen analytikere setter et minimumsnivå for 1/VIF verdien, og automatisk ekskluderer estimater som faller under deres toleransekriterium. VIF kolonnen tar for seg en og en koeffisient og reflekterer graden av hvor mye andre koeffisienters varians (og standard avvik) økes, gitt inkluderingen av den predikerte koeffisienten. VIF verdier gir en guide, men ikke direkte mål på økningen i variansen til koeffisienten. En anser en verdi på VIF høyere enn 10 og et gjennomsnitt på VIF verdiene høyere enn 1 som et problem. Her er det ingen variabler som har en VIF verdi høyere enn 1,94, og det er tidsvariablene som har de høyeste verdiene. Gjennomsnittlig verdi
er noe høyere enn en, men ikke så høy at vi kan si at vi har et stort problem med multikollinearitet. Og det ser ut til at det er tidsvariablene som lager størst problem.

3.2 "Does a Currency affect Trade? The Time Series Evidence", Glick and Rose (2001)

3.2.1 Beskrivelse av datasettet

Datasettet har, som Rose (2000), mange manglende verdier for ulike landpar, men inneholder i alt 426 792 observasjoner. Regresjonen er noe lik ligning (3.1). Forskjellen er at variabelen som indikerer valutakursvariasjonen over tid blir utelatt, samt at tre nye variabler blir inkludert: logarithmen av produktet av landarealet til land \(i \) og \(j \), og to dummyer hvor den ene indikerer hvor mange øyer landparet består av og en som indikerer om et eller begge land er en koloni i år \(t \).

\[
\ln(\text{handel}_{ijt}) = \beta_0 + \gamma_{\text{felles valuta}}_{ijt} + \beta_1 \ln(\text{BNP}_i\text{BNP}_j)_{it} + \\
\beta_2 \ln(\text{BNP}_i\text{BNP}_j/\text{Pop}_i\text{Pop}_j)_{it} + \beta_3 \ln(\text{avstand})_{ijt} + \beta_4 f.\text{språk}_{ij} + \beta_5 f.\text{grense}_{ij} + \\
\beta_6 f.\text{handelsavtale}_{ijt} + \beta_7 f.\text{landfast}_{ij} + \beta_8 f.\text{antall øyer}_{ij} + \beta_9 f.\text{areal}_{i}/f.\text{areal}_{j} + \beta_{10} f.\text{koloni}_{ij} + \\
\beta_{11} f.\text{koloni}_{i} \text{ i per } t_{ij} + \beta_{12} f.\text{koloni}_{ij} + \beta_{13} f.\text{land}_{ij} + \nu_{ijt}
\]

(3.6)

Handelstall er hentet fra CD-ROM "Direction of Trade" (DoT) datasettet utviklet av Det Internasjonale pengefondet (IMF). Eksport er oppgitt i FOB priser, og import er oppgitt i CIF priser. Disse blir deflatert med den amerikanske konsumprisindeksen. I motsetning til datasettet til "One Money One Market" bruker de her gjennomsnittet av fire mulig mål på handel mellom land. De fire målene vil her være eksport fra land \(i \) til \(j \) og vis versa, fra land \(j \) til \(i \), samt inkluderes import begge veier. BNP – data og populasjonsdata er hentet fra tre ulike kilder, først og fremst fra "World Development Indicators" (tatt fra Verdensbankens WDI 2000 CD – ROM) data. Der hvor det mangler data, fyller de inn med sammenlignbare tall fra Penn World Table Mark 5.6 og om de fremdeles manglet noe hentet de det fra IMF sin "International Financial Statistics", IFS, database. Avstand er great – circle beregnet fra lengde og bredde grader som er hentet fra CIA sin "World Factbook", andre landsspesifikke variabler hentes også her i fra, som språk \(f.\text{språk}_{ij} \), felles grenser \(f.\text{grense}_{ij} \), om land er fastbundet \(f.\text{landfast}_{ij} \) eller en eller begge land er en øy \(f.\text{antall øyer}_{ij} \), landareal \(f.\text{areal}_{i}/f.\text{areal}_{j} \) og kolonihistorien \(f.\text{koloni}_{ij}, f.\text{koloni}_{i} \text{ i per } t_{ij} \text{ og } f.\text{koloni}_{ij} \). \(f.\text{handelsavtale}_{ijt} \) variabelen indikerer om to land er under samme handelsavtale. Fakta om slike avtaler er hentet fra WTO. Her inkluderes EEC/ECEU; USA – Israel FTA; NAFTA; CARCIOM; PATCRA; ANZCERTA; og Mercosur. Alle disse handelsavtalene blir behandlet som like. \(f.\text{fellesvallutavariabelen} \) indikerer, som i "One Money One Market", om to land er i felles valutaunion eller ikke. Informasjonen om valutaunioner er hentet fra IMF sin "Scheldule of Par Values" og utgivelser fra IMF sin "annual Report on Exchange Rate Arrangement." \(f.\text{felles valutavariabelen} \) tar verdien en om valutaen mellom to land veksles i et 1:1 forhold på en slik
måte at det ikke var behov for å konvertere priser når det ble handlet mellom dem. Altså blir ikke fastkursregimer karakterisert som valutaunion. En liste over valutaunioner som er inkludert i datasettet er lagt ved i Appendiks, Liste A1.

I dette datasettet er dessverre ikke flere variabler inkludert enn de som er i ligning 3.6, slik at det ikke er mulig å finne instrumenter utenfor disse.

3.2.2 Analyse

Glick og Rose brukes panelanalyse og ikke tverrsnittsanalyse. De kan da se på hva som skjer med handel om noen forlater eller går inn i en valutaunion. I løpet av perioden 1948 – 1997 er det 16 land som entrer og 130 som forlater en valutaunion. Dette gjør at effektene de finner kommer av endring i handel etter en valutaunion avvikling. Flere ulike estimeringer blir gjort også i denne analysen. De to viktigste er MKM estimering, som er robust for ”clustering”38 (siden landpar er høyst sannsynlig til å være veldig avhengig over tid), og paneldatateknikk hvor både tilfeldige- og faste effekter blir estimert. De setter sin lit til den robuste faste effektestimatet, som essensielt legger til et sett av landparspesifikke skjæringspunkt til ligningen, og dermed utnytter kun tidsserie dimensjonen av datasettet rundt landpar gjennomsnittene. Her finner de koeffisienten til *felles valuta*, γ, lik 0,65, som tilsier ca 91.6 % effekt på handel.

Den deskriptive analysen deres39 viser at litt mindre enn 1 % av observasjonene er landpar som har felles valuta. Gjennomsnittsverdien for BNP og produktet av landareal til de to landene i hvert landpar er likt for de som har felles valuta og de som ikke har felles valuta, mens avstanden er lavere mellom valutaunionland enn andre. Videre viser denne analysen at blant observasjonene hvor land er i valutaunion er konsentrasjonen høyere av landpar med felles språk, felles grense og felles kolonihistorie.

En sammenslått MKM estimering hvor de kjører modellen ovenfor (3.6)40, gir en effekt av felles valuta på handel lik 267 %, hvor robust cluster estimering blir benyttet. Ved denne modellen vil det over tid være korrelasjon innad i gruppene, dette fordi det er flere komponenter i landparene som er tidsfaste, som avstand og landareal. Ved å inkludere en dummy for hvert landpar kontrollerer de for denne korrelasjonen. Men i dette arbeidet ønsker Glick og Rose å bruke panelaspektet ved datasettet sitt: De inkluderer flere perioder (i alt 49)

Panel estimering
De kjører fast effekt, tilfeldig effekt, between og maximum likelihood estimering, henholdsvis uten årseffekter inkludert. Ved disse fire, finner de koeffisienter mellom 0,65 (fast effekt) og 1,52 (between estimator). Jeg ser her på egenskapene til to av metodene:

Fasteffekt
Fasteffekt- modellen bruker at enkelte variabler i hvert landpar er konstante over tid. Teknisk så kontrollerer den for at landpar kan ha ulike skjeringspunkt.\(^{41}\) Disse faste effektene er da ikke mulig å beregne ut fra denne metoden. Ved utvalget til Glick og Rose vil da effektene av tidsfastevariabler som avstand, landareal og felles språk etc. ikke være mulig å estimere, men bli tatt inn i den faste uobserverte faktoren. Disse blir også droppet ved en slik estimering, slik at en estimering uten disse fasteffektvariablene vil (normalt) gi like resultat. Men også uobserverte forhold vil falle inn under denne faste effekten. Det vil da si at denne metoden vil ta hensyn til ulike faste faktorer (innenfor landparet) som påvirker handel, men som ikke er mulig å observere. En slik uobserverbar faktor kan f.eks. være ”kameratskap” mellom to land. I modellen er det inkludert dummyer som kontrollerer for kolonilinker, men det kan være andre historiske og for så vidt kulturelle begivenheter som kan påvirke handel mellom land i dag. Forhold som er vanskelig å lage en dummy for, i hvert fall for alle. Det kan være allianser i krig som gjør at to land har et nært forhold. Bitterhet i etterkant av krig og okkupasjon kan påvirke negativt etc.

Tilfeldig effekt
Denne modellen bruker landsspesifikke forhold. Utnytter både innad og mellom variasjon i landparene. Den betrakter uobserverte individspesifikke forhold som en stokastisk komponent, og inkluderer den som en del av det stokastiske feilleddet i modellen. Med andre ord vil dette si at den behandler ikke de uobserverte effektene som faste, men at de kan variere innad i gruppen (landparet). Om en ønsker å estimere effekten av en tidskonstant

\(^{41}\) I teorien diskuteres dette normalt rundt individ.
variabel, er denne mulig å bruke42. Men for å bruke denne er det mange strenge antakelser som konstant varias og forventning lik null både for det stokastiske leddet og feil­leddet. Samt skal det være uavhengighet mellom disse to. Det skal heller ikke være noen seriekorrelasjon mellom de stokastiske komponentene eller feil­leddene til de ulike landgruppene og til slutt skal det ikke være noen avhengighet mellom de forklarende variabler og det stokastiske komponent. En tilfeldig effekt­t estimator er et vektet gjennomsnitt av fasteffekt­estimatet og between­estimatet43.

Hvilken av disse metodene skal en da bruke for å estimere modellen? Ved Hausman testen kan jeg teste om det er best å bruke fast eller tilfeldig effekt­metoden. Denne tester om variasjonen i koeffisientene ved de to metodene er like. Om det er liten variasjon, er det anbefalt å bruke fast effekt­metoden. Teknisk så tester Hausman om det uobserverte leddet korrelerer med forklarings­variablene. Ved korrelasjon mellom disse, vil kun fast effekt­estimatene være konsistente44. Tilfeldig effekt­estimatene vil verken være konsistente eller effisiente. Om det kun er en liten korrelasjon mellom dem, vil fast effekt gi konsistente estimat. Tilfeldig effekt vil både gi konsistente og effisiente estimat. Dermed er det anbefalt å bruke tilfeldig effekt om forskjellen er liten. Hausman tester hypotesen om variasjonen mellom koeffisientene er lik null. Test verdien for regresjonen (3.6) forkaster H_0, $\chi^2(5)= 6418.7345$. Men denne er ikke positiv definit, slik at resultatene fra testen er ikke mulig å tolke. I kapittel 4 gjør jeg endringer ved ligning (3.6), slik at det er mulig å utføre Hausman hypotesetest.

Glick og Rose fokuserer på fast effekt­estimatene. Her finner de at om to land danner en (eller entrer samme) valutaunion så vil handelen mellom dem øke med 99,5 %46. Altså, handelen mellom dem vil dobles om de har felles valuta. Samme tolkingen ved et brudd i en valutaunion. Handel mellom to land vil halveres ved brudd i en valutaunion.

Problemer med datasettet

I analyse av dette datasettet kommer det frem at lave handelsverdier kan gi skjeve estimat. Siden vi bruker logaritmen av bilateral handel, vil de lave verdiene (mindre enn 1) få negative fortegn. Jo mindre disse verdiene er, jo mer negative blir de. STATA vekter tallene ut i fra

42 I motsetning til fasteffekt­modellen.
43 Utnytter variasjonen mellom landgruppene i motsetning til fast effekt som ser på variasjon innad i gruppene.
44 Gå mot sin sanne verdi når n→\infty
45 Se tabell …
46 $(\exp(0,65)-1)*100=99,55$.

35
absoluttverdier, dermed vil små (ved logaritme; store negative tall) handelsverdier få store vekter. Når jeg fjerner observasjonene som har negativ bilateral handel i datasettet, faller 2972 observasjoner bort. Flere av disse er allerede ekskludert fra regresjonen, pga. at noen av disse observasjonene har også null i verdi for andre variabler. Dermed resulterer det i at antall observasjoner i regresjonen reduseres med 1471. Se tabell 3.4 og 3.5.

I tabell 3.4 rapporterer jeg gjennomsnitts-, minimums- og maksimumsverdi for logaritmen av bilateral handel, både med og uten negative handelsverdier. Vi ser at gjennomsnittsverdien ikke blir betydelig lavere når de observasjonene med negativ handel blir fjernet, men at utvalget inneholder store negative tall (-16,12).

I de to kolonnene til venstre i tabell 3.5 rapporterer jeg resultatene fra modellen til Glick og Rose\(^\text{47}\), henholdsvis fast effekt og tilfeldig effekt. Resultatene fra modellen uten negative handelsverdier er i de to kolonnene til høyre. Det er ikke store endringer i koeffisientene, dermed har ikke de negative verdiene påvirket estimeringen i noen betydelig grad.

\begin{tabular}{|c|c|c|c|c|}
\hline
\textit{bilateralhandel} & \textit{Observasjoner} & \textit{Gjennomsnitt} & \textit{Minimumsverdi} & \textit{Maksimumsverdi} \\
\hline
Med nullverdier & 426 792 & 10,71 & -16,12 & 23,87 \\
\hline
Uten nullverdier & 423 820 & 10,82 & 0,003 & 23,87 \\
\hline
\end{tabular}

I tabell 3.5 ser vi hvordan de tidsfaste variablene faller vekk i fast effekt-estimeringen. Det er de variablene som er konstante innenfor landparene. De tidsfaste variablene er distansen mellom dem, om de har felles- språk og grense, om et eller begge er landfaste, antall øyer landparet består av, om de har vært under samme kolonimakt, eller et av landene har vært under kolonimakten til det andre og til slutt om de tilhører samme land. Alle disse effektene går her inn i det faste uobserverte komponent, og danner dermed ulike skjæringspunkt for de ulike landparene.

Om vi ser på tilfeldig effekt-koeffisientene, ser vi at denne viser en valutaunion effekt noe mindre enn den faste, 97,4 % økning i bilateral handel om to land får felles valuta.Som nevnt

\footnote{\textit{Som jeg har reproduert, denne er tilsvarende til Tabell 4 i Glick og Rose (2002), men jeg rapporterer flere koeffisienter enn dem.}}
bruces både innad gruppe variasjon (fast effekt) og mellom gruppe variasjon ved tilfeldig effekt- estimering. Koeffisientene endrer seg moderat når de negative handelsverdiene er utelatt. γ faller fra 0,65 til 0,63 (87,8 %) i fast effekt-modellen. I tilfeldig effekt-modellen faller γ fra 0,70 til 0,68 (97,4 %). Koeffisienten til avstandsvariabelen, β_3, øker fra -1,35 til -1,19. Modellene har høyere forklaringskraft når nullverdiene er utelatt, det ser vi av at R^2 øker ved begge modellene.

Som nevnt tidligere har det ikke vært mulig å foreta Hausman hypotesetest for å teste hvilke av de to estimeringsmetodene en bør bruke ved estimering av denne modellen, siden testen ikke er positiv definit. Når jeg kjørte denne testen fant jeg at det er koloni i per t variabelen som gir problemer for denne testen. Jeg vil i kapittel 4 utelate denne fra regresjonen, og se om det gir bedre resultat. Det er og to variabler som ikke er signifikante på 1 % i tilfeldig effekt-modellen. Disse er faste effekter, antall øyer og samme land variablene. I kapittel 4 vil jeg også utelate disse fra modellen. Siden signifikansnivået er lavt og R^2 endres lite når disse blir utelatt, er det mulig å bruke dem som instrument for felles valutavariabelen. Dette diskuterer jeg i kapittel 4.
<table>
<thead>
<tr>
<th>Variabler</th>
<th>Metode</th>
<th>Fast effekt (m/nullverdier)</th>
<th>Tilfeldig effekt (m/nullverdier)</th>
<th>Fast effekt (u/nullverdier)</th>
<th>Tilfeldig effekt (u/nullverdier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felles valuta</td>
<td></td>
<td>0,65 (0,05)</td>
<td>0,70 (0,05)</td>
<td>0,63 (0,05)</td>
<td>0,68 (0,04)</td>
</tr>
<tr>
<td>Avstand</td>
<td></td>
<td>-1,35 (0,03)</td>
<td></td>
<td>-1,19 (0,03)</td>
<td></td>
</tr>
<tr>
<td>BNP</td>
<td></td>
<td>0,05 (0,01)</td>
<td>0,27 (0,01)</td>
<td>0,07 (0,01)</td>
<td>0,31 (0,01)</td>
</tr>
<tr>
<td>BNP per capita</td>
<td></td>
<td>0,79 (0,01)</td>
<td>0,53 (0,01)</td>
<td>0,76 (0,01)</td>
<td>0,47 (0,01)</td>
</tr>
<tr>
<td>F. språk</td>
<td></td>
<td></td>
<td>0,18 (0,06)</td>
<td></td>
<td>0,16 (0,05)</td>
</tr>
<tr>
<td>F. grense</td>
<td></td>
<td></td>
<td>0,53 (0,16)</td>
<td></td>
<td>0,69 (0,13)</td>
</tr>
<tr>
<td>F. handelsavtale</td>
<td></td>
<td>0,69 (0,05)</td>
<td>0,66 (0,04)</td>
<td>0,70 (0,04)</td>
<td>0,67 (0,04)</td>
</tr>
<tr>
<td>Ant. landfaste</td>
<td></td>
<td>-0,86 (0,04)</td>
<td></td>
<td>-0,77 (0,03)</td>
<td></td>
</tr>
<tr>
<td>Ant. Øyer</td>
<td></td>
<td>-0,06** (0,05)</td>
<td></td>
<td>-0,07** (0,04)</td>
<td></td>
</tr>
<tr>
<td>Areal</td>
<td></td>
<td>0,26 (0,01)</td>
<td></td>
<td>0,20 (0,01)</td>
<td></td>
</tr>
<tr>
<td>Samme koloni</td>
<td></td>
<td>-0,28 (0,08)</td>
<td></td>
<td>-0,18 (0,06)</td>
<td></td>
</tr>
<tr>
<td>Koloni i per. t</td>
<td></td>
<td>0,36 (0,09)</td>
<td>0,43 (0,09)</td>
<td>0,37 (0,08)</td>
<td>0,45 (0,08)</td>
</tr>
<tr>
<td>Koloni</td>
<td></td>
<td>3,21 (0,21)</td>
<td></td>
<td>2,98 (0,16)</td>
<td></td>
</tr>
<tr>
<td>Samme land</td>
<td></td>
<td>1,27** (1,6)</td>
<td></td>
<td>1,09** (1,26)</td>
<td></td>
</tr>
<tr>
<td>Observasjoner</td>
<td></td>
<td>219 558</td>
<td>219 558</td>
<td>218 087</td>
<td>218 087</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td></td>
<td>0,1174</td>
<td>0,1152</td>
<td>0,1414</td>
<td>0,1382</td>
</tr>
<tr>
<td>between</td>
<td></td>
<td>0,2289</td>
<td>0,5207</td>
<td>0,2695</td>
<td>0,5959</td>
</tr>
<tr>
<td>overall</td>
<td></td>
<td>0,2236</td>
<td>0,4656</td>
<td>0,2546</td>
<td>0,5151</td>
</tr>
<tr>
<td>obs. pr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gruppe</td>
<td></td>
<td>Min</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gjensnitt</td>
<td>19,6</td>
<td>19,6</td>
<td>19,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maks</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

* Ikke signifikant på 1 % nivå, men på 5 %.
** Ikke signifikant.
Kapittel 4 Ulike transformeringer av datamaterialet

Ved datasettet fra Glick og Rose (2002) er mulighetene begrenset, da det ikke er flere variabler inkludert enn de som allerede finnes i modellen. Men jeg vil her fokusere på panelestimering uten de observasjonene med negative handelsverdier. De negative handelsverdiene er et resultat av at enkelte landpar har liten bilateral handel. Disse lave verdiene (mindre enn 1) blir negative når logaritmen beregnes. Tabell 3,5 viser at en utelatelse av de negative verdiene ikke endrer resultatene mer enn marginalt. Ved estimering av ligning (3.5) uten nullverdier finner jeg at to av variablene ikke er signifikante. Når de insignifikante variablene utelates faller ikke R^2 mer enn marginalt. Jeg bruker da disse som instrument for valutaunionvariabelen.

4.1 ”One Money One Market”

4.1.1 Inkludering av nye variabler

Ifølge Rose (2000) handler land i valutaunioner tre ganger mer med hverandre enn andre land. Men om et land entrer en valutaunion, kan det være en positiv effekt på handel mellom landet
og landene utenfor unionen også? Om land \(i \) og \(j \) danner en valutaunion, eller entrer samme union, vil handelspartnerne til land \(j \) og som ikke handlet med land \(i \) før unionen nå ha samme valuta (som til \(j \)) å forholde seg til om de velger å også handle med land \(i \). Jeg ønsker å se om det er en effekt på bilateral handel om et land er med i valutaunion eller ikke. For å kunne gjøre det, konstruerer jeg en ny variabel \textit{valutaunionland}. Hvordan jeg lager denne blir beskrevet i neste avsnitt.

4.1.1.1 Valutaunionland

For å konstruere variabelen \textit{valutaunionland} bruker jeg alle landene i datasettet som er i en eller annen form for valutaunion. Deretter generer jeg en dummyvariabel som indikerer om et eller begge land i landparet er et valutaunionland eller ikke. Jeg begynner med å inkludere den variabelen i modellen til Rose (2000)\(^{48}\). Her kan vi ha et problem med multikollinearitet. Alle observasjonene hvor land har felles valuta vil også være et \textit{valutaunionland}-par. Men korrelasjonen mellom dem er ikke høy (0,13), slik at dette ikke nødvendigvis er et problem. Modellen jeg estimerer er følgende:

\[
\ln(\text{handel}_{ijt}) = \beta_0 + \gamma_1 \text{felles valuta}_{ijt} + \gamma_2 \text{valutaunionland}_{ijt} + \delta \text{valutakursvolatile}_{ijt} + \\
+ \beta_1 \ln(BNP_{i}, BNP_{j}) + \beta_2 \ln(BNP_i/BNP_j/Pop_{i}/Pop_{j}) + \beta_3 \lnavstand_{ij} + \beta_4 \text{f.grense}_{ij} + \\
\beta_5 \text{f.språk}_{ij} + \beta_6 \text{f.handelsavtale}_{ijt} + \beta_7 \text{f.land}_{ij} + \beta_8 \text{f.koloni}_{ij} + \beta_9 \text{koloni}_{ij} + \epsilon_{ijt}
\]

(4.1)

Variablene i denne modellen er forklart i 3.1.1, hvor \textit{valutaunionland}- dummyvariabelen er ny i forhold til modell (3.1). Resultatene fra modell (4.1) presenteres i tabell 4.1. Jeg gjør her som Rose, og estimerer først for hver periode og til slutt slår jeg sammen alle periodene (høyre kolonne). I den sammenslåtte MKM estimeringen inkluderer jeg tidsvariablene y75-y90.

Når jeg sammenligner tabellene (3.1) og (4.1) ser jeg at noen av koeffisientene endrer seg ved inkludering av \textit{valutaunionland} variabelen. \(\gamma_1 \) er noe lavere i hver periode, samt i den sammenslåtte modellen. Denne varierer nå fra 0,6 (82,2 \%) i 1970, hvor den ikke er signifikant og til 1,5 (348,2 \%) i 1990. I den sammenslåtte MKM regresjonen er den 1,05 som tilsier 185,8 \% mer handel for land med felles valuta. I tabell 3.1 var \(\gamma_1 \) lik 1,198 (231,3 \%). \(\gamma_2 \) varierer mellom 0,08 (8,3 \%) i 1990 hvor den ikke er signifikant til 0,5 (64,9 \%) i 1970 hvor

\(^{48}\) Tabell 1
den er signifikant. I sammenslått MKM viser handel mellom et land som er i en valutaunion og et land utenfor å være 37,7 % høyere enn for handel mellom land utenfor unioner. Denne er altså positiv og statistisk signifikant. Effekten av valutakursvolatiliteten endres marginalt; fra -0,17 (tabell 3.1) til -0,14 (tabell 4.1), i den sammenslåtte modellen. Denne sier oss at om avstand mellom to land er 1 % høyere, vil den bilaterale handelen være 0,14 % lavere, alt annet likt. De andre koeffisientene endres ikke i noen betydelig grad. Samt viser R² at forklaringskraften er like høy for begge modellene.
Tabell 4.1. Ligning (4.1) Effekt på bilateral handel, MKM

<table>
<thead>
<tr>
<th>År</th>
<th>Felles valuta, γ_1</th>
<th>Valutaunionland, γ_2</th>
<th>Valutakurs volatilitet, δ</th>
<th>BNP, β_1</th>
<th>BNP per capita, β_2</th>
<th>Avstand, β_3</th>
<th>F. grense, β_4</th>
<th>F. språk, β_5</th>
<th>F. handelsavtale, β_6</th>
<th>F. land, β_7</th>
<th>F. koloni, β_8</th>
<th>Koloni, β_9</th>
<th>$y75$</th>
<th>$y80$</th>
<th>$y85$</th>
<th>$y90$</th>
<th>observasjoner</th>
<th>R^2</th>
<th>Ovtest</th>
<th>Ovtest, rhs</th>
<th>\textit{vif}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>0,6* (0,43)</td>
<td>0,42 (0,07)</td>
<td>-0,06 (0,01)</td>
<td>0,78 (0,16)</td>
<td>0,63 (0,03)</td>
<td>-1,11 (0,05)</td>
<td>0,47* (0,21)</td>
<td>0,53 (0,1)</td>
<td>0,77 (0,17)</td>
<td>1,77* (0,71)</td>
<td>0,87 (0,15)</td>
<td>2,22 (0,23)</td>
<td>-0,18 (0,05)</td>
<td>-0,57 (0,05)</td>
<td>-1,3 (0,05)</td>
<td>-1,5 (0,46)</td>
<td>4052</td>
<td>0,58</td>
<td>47,34</td>
<td>18,74</td>
<td>1,18</td>
</tr>
<tr>
<td>1975</td>
<td>1,05 (0,41)</td>
<td>0,5 (0,07)</td>
<td>-0,006 (0,01)**</td>
<td>0,83 (0,01)</td>
<td>0,64 (0,03)</td>
<td>-1,17 (0,04)</td>
<td>0,36 (0,19)</td>
<td>0,33 (0,1)</td>
<td>0,86 (0,22)</td>
<td>1,46* (0,67)</td>
<td>0,71 (0,14)</td>
<td>2,17 (0,2)</td>
<td>(0,05)</td>
<td>(0,05)</td>
<td>(0,05)</td>
<td>(0,46)</td>
<td>4474</td>
<td>0,6</td>
<td>39,58</td>
<td>14,16</td>
<td>1,21</td>
</tr>
<tr>
<td>1980</td>
<td>1,0 (0,27)</td>
<td>0,34 (0,06)</td>
<td>-0,05 (0,01)</td>
<td>0,82 (0,01)</td>
<td>0,61 (0,02)</td>
<td>-1,04 (0,04)</td>
<td>0,73 (0,18)</td>
<td>0,26 (0,09)</td>
<td>1,18 (0,17)</td>
<td>1,14* (0,47)</td>
<td>0,52 (0,12)</td>
<td>2,14 (0,14)</td>
<td>-0,18 (0,05)</td>
<td>-0,57 (0,05)</td>
<td>(0,05)</td>
<td>(0,05)</td>
<td>5092</td>
<td>0,62</td>
<td>75,42</td>
<td>23,84</td>
<td>1,23</td>
</tr>
<tr>
<td>1985</td>
<td>1,25 (0,27)</td>
<td>0,27 (0,06)</td>
<td>-0,02 (0,01)</td>
<td>0,8 (0,01)</td>
<td>0,65 (0,02)</td>
<td>-1,06 (0,04)</td>
<td>0,52 (0,18)</td>
<td>0,35 (0,08)</td>
<td>1,14 (0,17)</td>
<td>1,84 (0,65)</td>
<td>0,48 (0,12)</td>
<td>1,92 (0,14)</td>
<td>(0,05)</td>
<td>(0,05)</td>
<td>(0,05)</td>
<td>(0,46)</td>
<td>5091</td>
<td>0,65</td>
<td>57,00</td>
<td>18,44</td>
<td>1,21</td>
</tr>
<tr>
<td>1990</td>
<td>1,5 (0,27)</td>
<td>0,08** (0,002)</td>
<td>-0,008 (0,002)</td>
<td>0,83 (0,01)</td>
<td>0,73 (0,02)</td>
<td>-1,12 (0,04)</td>
<td>0,64 (0,18)</td>
<td>0,5 (0,08)</td>
<td>0,63 (0,15)</td>
<td>0,87 (0,51)</td>
<td>0,59 (0,12)</td>
<td>1,72 (0,15)</td>
<td>-0,18 (0,05)</td>
<td>(0,05)</td>
<td>(0,05)</td>
<td>(0,05)</td>
<td>4239</td>
<td>0,72</td>
<td>48,26</td>
<td>13,41</td>
<td>1,29</td>
</tr>
<tr>
<td>70 - 90</td>
<td>1,05 (0,14)</td>
<td>0,32 (0,03)</td>
<td>-0,14 (0,002)</td>
<td>0,81 (0,01)</td>
<td>0,65 (0,01)</td>
<td>-1,1 (0,19)</td>
<td>0,54 (0,09)</td>
<td>0,39 (0,04)</td>
<td>1,0 (0,08)</td>
<td>1,52 (0,28)</td>
<td>0,63 (0,06)</td>
<td>2,05 (0,08)</td>
<td>(0,05)</td>
<td>(0,05)</td>
<td>(0,05)</td>
<td>(0,46)</td>
<td>22948</td>
<td>0,63</td>
<td>242,85</td>
<td>76,85</td>
<td>1,38</td>
</tr>
</tbody>
</table>

Robust standardavvik i parentes.

* Ikke signifikant på 1 % nivå, men på 5 %.

** Ikke signifikant.
I tabell 4.2 er resultater fra ligning (4.1) rapportert. Her ekskluderer jeg ulike grupper i utvalget. Jeg estimerer også modellen hvor den nye variabelen valutaunionland er inkludert, men uten fellesvaluta-variabelen (1. kolonne). Videre estimerer jeg modellen kun for land som ikke har fellesvaluta (felles valuta=0), land som har felles valuta (felles valuta=1) og til slutt ser jeg på handel for landpar hvor et eller begge landene er i en form for valutaunion (valutaunionland =1) og på landpar hvor ingen av landene er i en valutaunion (valutaunionland =0).

1. kolonne viser at koeffisientene endrer seg lite ved ekskludering av felles valuta variabelen, \(y_2 \) øker fra 0,32 (37,7 %) til 0,34 (40,5 %). I modellen hvor kun handel innenfor valutaunioner er estimert (3. kolonne) er det flere variabler som ikke er signifikante, men her er det kun 252 observasjoner, slik at utvalget er for lite for å utføre en god estimering. Resultatene i denne tabellen viser at valutakursvolatiliteten har mindre påvirkningskraft for landpar hvor begge land er utenfor en valutaunion (4. kolonne) enn for landpar hvor et land er i valutaunion (5. kolonne). De andre koeffisientene endres kun margjinalt ved de ulike regresjonene. Forklaringskraften i modellene er også sammenlignbare. R\(^2\) varier fra 0,60 til 0,69.

Resultatene fra ”ovtest” og ”ovtest, rhs” er rapportert i bunnen av tabellen. Testene viser at modellen som kun estimerer bilateral handel for land utenfor en valutaunion har minst problem med utelatte variabler (4. kolonne) (om vi da ser bort fra regresjonen hvor kun handel mellom land innenfor ev valutaunion er estimert). Resultatene fra testene er henholdsvis ”ovtest”; 43,15 og ”ovtest, rhs” 26,55. Vif- gjennomsnittsverdien som kontrollerer for multikollinearitet er noe høy i alle regresjonene (denne bør være mindre enn 1). Når jeg sammenlikner modellen i høyre kolonne hvor regresjonen er fra hele utvalget og årsdummyene, y75-y90, ikke er inkludert, finner jeg den laveste vif- gjennomsnittsverdi. Det er tidsdummyene som har høyest vif- verdi i alle testene, se tabell 3.3.
Tabell 4.2 Bilateral handel for valutaunionland og land som ikke er i valutaunion, MKM

<table>
<thead>
<tr>
<th>If: Variabler</th>
<th>uten valuta</th>
<th>felles valuta = 0</th>
<th>felles valuta = 1</th>
<th>valuta-union = 0</th>
<th>Valuta-union = 1</th>
<th>Uten tids-variabler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felles valuta, γ₁</td>
<td>0,34 (0,03)</td>
<td>0,32 (0,03)</td>
<td>***</td>
<td>***</td>
<td>0,93 (0,15)</td>
<td>0,79 (0,14)</td>
</tr>
<tr>
<td>Valuta-land, γ₂</td>
<td>0,014 (0,002)</td>
<td>-0,014 (0,002)</td>
<td>***</td>
<td>-0,01 (0,002)</td>
<td>-0,027 (0,004)</td>
<td>-0,04 (0,002)</td>
</tr>
<tr>
<td>Valutakurs volatilitet, δ</td>
<td>0,81 (0,006)</td>
<td>0,81 (0,01)</td>
<td>0,70 (0,06)</td>
<td>0,87 (0,009)</td>
<td>0,77 (0,008)</td>
<td>0,80 (0,006)</td>
</tr>
<tr>
<td>BNP, β₁</td>
<td>0,64 (0,01)</td>
<td>0,65 (0,01)</td>
<td>0,30* (0,12)</td>
<td>0,68 (0,01)</td>
<td>0,58 (0,02)</td>
<td>0,58 (0,01)</td>
</tr>
<tr>
<td>Avstand, β₃</td>
<td>-1,12 (0,02)</td>
<td>-1,11 (0,02)</td>
<td>-0,72 (0,15)</td>
<td>-1,15 (0,02)</td>
<td>-1,02 (0,03)</td>
<td>-1,10 (0,02)</td>
</tr>
<tr>
<td>F. grense, β₄</td>
<td>0,53 (0,09)</td>
<td>0,50 (0,09)</td>
<td>0,83** (0,42)</td>
<td>0,6 (0,11)</td>
<td>0,47 (0,14)</td>
<td>0,60 (0,09)</td>
</tr>
<tr>
<td>F. språk, β₅</td>
<td>0,41 (0,04)</td>
<td>0,39 (0,04)</td>
<td>1,61 (0,54)</td>
<td>0,18 (0,05)</td>
<td>0,72 (0,06)</td>
<td>0,44 (0,04)</td>
</tr>
<tr>
<td>F. handelsavtale, β₆</td>
<td>0,98 (0,08)</td>
<td>0,96 (0,08)</td>
<td>1,20* (0,53)</td>
<td>0,77 (0,11)</td>
<td>1,09 (0,11)</td>
<td>0,80 (0,08)</td>
</tr>
<tr>
<td>F. land, β₇</td>
<td>2,09 (0,26)</td>
<td>2,13 (0,67)</td>
<td>0,86* (0,41)</td>
<td>3,17 (0,53)</td>
<td>1,17 (0,3)</td>
<td>1,60 (0,29)</td>
</tr>
<tr>
<td>F. koloni, β₈</td>
<td>0,67 (0,06)</td>
<td>0,65 (0,06)</td>
<td>1,63 (0,53)</td>
<td>0,94 (0,09)</td>
<td>0,2* (0,08)</td>
<td>0,50 (0,06)</td>
</tr>
<tr>
<td>Koloni, β₀</td>
<td>2,01 (0,08)</td>
<td>2,02 (0,08)</td>
<td>1,60 (0,52)</td>
<td>2,58 (0,3)</td>
<td>1,85 (0,07)</td>
<td>2,05 (0,08)</td>
</tr>
<tr>
<td>y75</td>
<td>-0,17 (0,05)</td>
<td>-0,17 (0,05)</td>
<td>-0,11** (0,54)</td>
<td>-0,22 (0,06)</td>
<td>-0,15** (0,08)</td>
<td></td>
</tr>
<tr>
<td>y80</td>
<td>-0,55 (0,04)</td>
<td>-0,56 (0,05)</td>
<td>-0,82** (0,47)</td>
<td>-0,6 (0,06)</td>
<td>-0,59 (0,07)</td>
<td></td>
</tr>
<tr>
<td>y85</td>
<td>-1,3 (0,04)</td>
<td>-1,31 (0,04)</td>
<td>-1,06** (0,5)</td>
<td>-1,34 (0,06)</td>
<td>-1,34 (0,07)</td>
<td></td>
</tr>
<tr>
<td>y90</td>
<td>-1,49 (0,05)</td>
<td>-1,5 (0,05)</td>
<td>-1,37 (0,5)</td>
<td>-1,48 (0,06)</td>
<td>-1,63 (0,07)</td>
<td></td>
</tr>
</tbody>
</table>

Observasjoner	22948	22696	252	14412	8536	22948
R²	0,63	0,63	0,67	0,60	0,69	0,61
Ovtest	240,18	237,77	4,26	43,15	186,52	237,5
Ovtest, rhs	80,48	83,59	2,55	26,55	51,78	90,9
vif	1,37	1,35	2,78	1,38	1,46	1,21

Robust standardavvik i parentes.
* Ikke signifikant på 1 % nivå, men på 5 %.
** Ikke signifikant.
*** Droppes p.g.a. kollinearitet.
4.1.1.2 Remote

49 Frankel 1997
4.1.1.3 Open og areas

I tabell 4.3 inkluderer jeg enda to variabler, *open* og *areas*. Først nevnte er et mål på graden av åpenhet for de to landene. Denne er beregnet ved produktet av eksport *(x)* pluss import *(m)* andel av BNP *(y)* i de to landene *i* og *j*.

\[
open = \left(\frac{x + m}{y} \right)_i \left(\frac{x + m}{y} \right)_j \quad \text{(4.2)}
\]

Variabelen *areas* er produktet av arealet av land *i* og land *j*,

\[
areas = \text{areal}_i \times \text{areal}_j \quad \text{(4.3)}
\]

4.1.1.4 Resultater

Valutakursvolatiliteten viser seg å ikke være statistisk signifikant når *open* er inkludert. Ellers er alle variablene signifikante i de ulike modellene. \(\gamma_1 \) varierer mellom 0,96 (1. kolonne) og 1,22 (2. kolonne). \(\gamma_2 \) varierer mellom 0,32 (1. kolonne) og 0,43 (5. kolonne). *Remote* viser en klar positiv effekt, når to land er fjernet fra andre land, handler disse mer med hverandre. Koeffisienten til *remote*, \(\beta_{10} \), er høy og varierer i de ulike modellene; fra 36,8 til 50,75, samtidig er standardavviket høyt; mellom 14 og 17. Den er statistisk signifikant men med lave t verdier. *Open*, \(\beta_{12} \), viser en positiv effekt; om graden av åpenhet øker med 1 % vil handel øke 0,01 %. Denne er også statistisk signifikant i alle modellene i tabell 4.3. Derimot er variabelen *areas* ikke like stabil i disse modellene. Effekten av størrelsen på landene varierer fra -0,21 til 0,19. En grunn til denne variasjonen kan være at denne korrelerer høyt med både
open (negativ korrelasjon) og BNP (positiv korrelasjon). Ved sammenlikning av tester for utelatte variabler, multikollinearitet og R^2, er det de tre modellene hvor areas ikke er inkludert som gir de beste resultatene.
Tabell 4.3 Ulike variabler inkludert i modellen: MKM med tidsdummyer

<table>
<thead>
<tr>
<th>Inkluderte variabler</th>
<th>remote</th>
<th>Remote Areas</th>
<th>Remote Areas Open</th>
<th>Remote Open</th>
<th>Areas Open</th>
<th>Areas</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felles valuta, (\gamma_1)</td>
<td>0,96 (0,15)</td>
<td>0,95 (0,14)</td>
<td>1,21 (0,16)</td>
<td>1,19 (0,16)</td>
<td>1,23 (0,16)</td>
<td>1,04 (0,14)</td>
<td>1,22 (0,16)</td>
</tr>
<tr>
<td>Valutaunionsland, (\gamma_2)</td>
<td>0,32 (0,03)</td>
<td>0,39 (0,03)</td>
<td>0,42 (0,03)</td>
<td>0,39 (0,03)</td>
<td>0,43 (0,03)</td>
<td>0,41 (0,03)</td>
<td>0,40 (0,03)</td>
</tr>
<tr>
<td>Valutakursvolatilitet, (\delta)</td>
<td>-0,012 (0,02)</td>
<td>-0,01 (0,002)</td>
<td>-0,004 (0,002)**</td>
<td>-0,004 (0,002)*</td>
<td>-0,004 (0,002)*</td>
<td>-0,012 (0,002)</td>
<td>-0,005 (0,002)*</td>
</tr>
<tr>
<td>BNP, (\beta_1)</td>
<td>0,83 (0,006)</td>
<td>0,90 (0,01)</td>
<td>0,98 (0,01)</td>
<td>0,94 (0,007)</td>
<td>1,00 (0,008)</td>
<td>0,89 (0,007)</td>
<td>0,95 (0,007)</td>
</tr>
<tr>
<td>BNP per capita, (\beta_2)</td>
<td>0,66 (0,01)</td>
<td>0,60 (0,01)</td>
<td>0,50 (0,01)</td>
<td>0,52 (0,01)</td>
<td>0,48 (0,01)</td>
<td>0,56 (0,01)</td>
<td>0,51 (0,01)</td>
</tr>
<tr>
<td>Avstand, (\beta_3)</td>
<td>-1,15 (0,02)</td>
<td>-1,11 (0,02)</td>
<td>-1,16 (0,02)</td>
<td>-1,19 (0,02)</td>
<td>-1,15 (0,02)</td>
<td>-1,05 (0,02)</td>
<td>-1,18 (0,02)</td>
</tr>
<tr>
<td>F. grense, (\beta_4)</td>
<td>0,50 (0,09)</td>
<td>0,63 (0,09)</td>
<td>0,57 (0,09)</td>
<td>0,50 (0,09)</td>
<td>0,59 (0,09)</td>
<td>0,69 (0,09)</td>
<td>0,51 (0,09)</td>
</tr>
<tr>
<td>F. språk, (\beta_5)</td>
<td>0,44 (0,04)</td>
<td>0,52 (0,04)</td>
<td>0,46 (0,04)</td>
<td>0,41 (0,04)</td>
<td>0,42 (0,04)</td>
<td>0,49 (0,04)</td>
<td>0,38 (0,04)</td>
</tr>
<tr>
<td>F. handelsavtale, (\beta_6)</td>
<td>0,80 (0,08)</td>
<td>0,65 (0,08)</td>
<td>0,46 (0,08)</td>
<td>0,52 (0,08)</td>
<td>0,53 (0,08)</td>
<td>0,75 (0,08)</td>
<td>0,59 (0,08)</td>
</tr>
<tr>
<td>F. land, (\beta_7)</td>
<td>1,72 (0,36)</td>
<td>1,64 (0,36)</td>
<td>2,71 (0,45)</td>
<td>2,64 (0,43)</td>
<td>2,71 (0,45)</td>
<td>1,44 (0,29)</td>
<td>2,63 (0,43)</td>
</tr>
<tr>
<td>F. koloni, (\beta_8)</td>
<td>0,73 (0,06)</td>
<td>0,62 (0,06)</td>
<td>0,45 (0,06)</td>
<td>0,48 (0,06)</td>
<td>0,44 (0,06)</td>
<td>0,50 (0,08)</td>
<td>0,48 (0,06)</td>
</tr>
<tr>
<td>Koloni, (\beta_9)</td>
<td>2,00 (0,07)</td>
<td>1,81 (0,08)</td>
<td>1,80 (0,08)</td>
<td>1,80 (0,08)</td>
<td>1,82 (0,08)</td>
<td>1,85 (0,08)</td>
<td>1,92 (0,08)</td>
</tr>
<tr>
<td>Remote, (\beta_{10})</td>
<td>36,8 (14,06)</td>
<td>50,75 (15,65)</td>
<td>49,71 (17,21)</td>
<td>43,40 (16,51)</td>
<td>49,71 (17,21)</td>
<td>50,75 (15,65)</td>
<td>49,71 (17,21)</td>
</tr>
<tr>
<td>Areas, (\beta_{11})</td>
<td>0,19 (0,01)</td>
<td>-0,11 (0,01)</td>
<td>0,12 (0,01)</td>
<td>-0,21 (0,01)</td>
<td>0,12 (0,01)</td>
<td>-0,21 (0,01)</td>
<td>0,12 (0,01)</td>
</tr>
<tr>
<td>Open, (\beta_{12} \times 10,000)</td>
<td>0,9 (0,05)</td>
<td>0,9 (0,05)</td>
<td>0,9 (0,05)</td>
<td>1 (0,04)</td>
<td>0,9 (0,05)</td>
<td>0,9 (0,05)</td>
<td>1 (0,04)</td>
</tr>
<tr>
<td>Observasjoner</td>
<td>21593</td>
<td>21593</td>
<td>20723</td>
<td>20723</td>
<td>20906</td>
<td>22958</td>
<td>20906</td>
</tr>
<tr>
<td>R2</td>
<td>0,64</td>
<td>0,64</td>
<td>0,66</td>
<td>0,66</td>
<td>0,65</td>
<td>0,69</td>
<td>0,65</td>
</tr>
</tbody>
</table>

Tester

Ovtest; chi²fordeling | 174,43 | 198,05 | 162,59 | 150,45 | 157,26 | 264,44 | 145,21 |
Ovtest, rhs; chi²fordeling | 50,30 | 47,88 | 43,64 | 43,45 | 50,89 | 67,67 | 51,73 |
Vif; gisntl.verdi | 1,35 | 1,45 | 1,47 | 1,39 | 1,49 | 1,48 | 1,41 |

Robust standardavvik i parantes.
* Ikke signifikant på 1 % nivå, men på 5 %.
** Ikke signifikant.
Tidsdummyene er ikke rapportert.
4.1.2 Finnes det gode instrument for fellesvaluta- variabelen?

Om felles valuta er endogen, vil det være korrelasjon mellom den og feilleddet i regresjonen. Dette kan gi skjeve estimater. Når jeg ser på resultatene fra (3.1), er nærmere alle koeffisientene signifikante. Og R² viser at ligningen forklarer mye av verdien på bilateral handel. Om det likevel er utelatte variabler, som forklarer valutaunionvariabelen, felles valuta, så vil feilleddet være korreleret med felles valuta.

Jeg har utført ulike IV estimeringer. Resultatene fra disse er ikke rapportert. Jeg har forsøkt samme instrument som Rose (2000), mip; produktet av inflasjonsratene i land i og land j. mis; summen av dem og mid; absolutt verdien av forskjellen mellom de to inflasjonsratene, alle er kalkulert over den fem års følgende utvalgsperioden. Disse viser seg å ikke være gode instrument. Videre har jeg forsøkt andre instrument; i tillegg til instrumentene mip, mis, mid, inkluderte jeg variablene open samt ulike mål på pengemengde.

Ingen av variablene jeg bruker som instrument for felles valuta viser seg å være gode instrument. Pga. hull i datasettet, er det dessverre ikke mulig å lagge variabler. For eksempel kunne en lagget handelsavtale variabel vært et godt instrument for felles valuta.

Til slutt har jeg utelatt tidsvariablene fra modellen. I testene for multikollinearitet er det disse som viser seg å være høyest korreleret. Testen for utelatte variabler viser ikke en betydelig forhøyet verdi ved utelatelse av disse. Koeffisientene γ₁ og γ₂ reduseres. Effekten av felles valuta på bilateral handel er her (0,80) 122,6 % og valutaunionland er (0,22) 24,6 %.

Resultatene fra modellen uten tidsvariabler er i høyre kolonne i tabell 4.2.
Tabell 4.4 Korrelasjon mellom variablene i Rose (2000) modellen

lvalue	cu	cucountry	sdd	lrsgdp	lrsgdppc	ldist	border	comlang	...
1.0000		0.0125	0.1178	1.0000	0.6677	0.0699	1.0000		
-0.0885	-0.0602	-0.0495	0.0609	0.4846	0.0953	0.0387	0.4065	1.0000	
-0.1849	-0.1507	0.0231	0.0810	0.1653	0.0756	1.0000			
0.1278	0.0787	-0.0156	0.0088	-0.0051	-0.0743	-0.4032	1.0000		
0.0295	0.1694	0.1008	0.0124	-0.1436	-0.0422	-0.1597	0.1416	1.0000	
0.1509	0.0424	0.0206	-0.0140	0.0230	0.1202	-0.2857	0.1450	0.0569	
0.0226	0.0358	0.0048	-0.0125	-0.0129	-0.0002	0.0064	-0.0035	0.0364	
-0.1455	0.2086	0.0714	-0.0458	-0.3036	-0.2456	-0.1260	0.0683	0.2780	
0.1326	-0.0009	0.1445	-0.0311	0.0507	0.0368	-0.0111	0.0085	0.1737	
0.1196	-0.0222	0.0045	-0.0192	0.1214	0.0786	-0.0239	0.0114	0.0309	
0.1920	-0.0413	0.0599	0.0888	0.5072	0.1155	0.1784	0.0517	-0.0081	
-0.0601	0.0311	-0.0243	-0.1181	-0.3515	0.2284	-0.0303	-0.0033	0.0904	
0.0414	-0.0134	-0.0353	-0.0959	-0.0362	-0.0604	0.0082	0.0083	0.0040	
0.0410	0.0204	0.0102	-0.0846	0.0002	0.0333	-0.0156	0.0063	0.0066	
0.0158	0.0035	0.0189	0.3236	0.1261	0.0915	0.0450	-0.0100	-0.0068	

4.1.3 Paneldata tilnærmning
Datasettet, som forklart tidligere, spenner over fem perioder. Det er mulig å bruke dette som paneldata. For å kunne gjøre dette må jeg ha en variabel som skiller de ulike landparene. Jeg konstruerer og bruker landpar_1 som gruppevariabel.

4.1.3.1 konstruksjon av landpargrupper
Jeg konstruerer en variabel som indikerer de ulike landparene ved å bruke variablene som tar ulike koder for de ulike landene i datasettet, cty1 og cty2. Jeg har prøvet og feilet for å bruke disse kodende for å lage en unik kode for hvert landpar. Jeg forsøkte å summere de to kodene og å addere de, men da var det noen landparkoder som fikk lik verdi. Men når jeg genererte
en ny landskode for hvert land, ved å dele den opprinnelige koden \textit{ctyl} med 1000, og det samme med \textit{cty2} koden, for så å gange de to nye kodene med hverandre fant jeg en unik kode for hvert landpar, som ble kalt landpar\textsubscript{1}.

4.1.3.2 Resultater ved panelestimering
Jeg kjører både fast- og tilfeldigeffekt- modeller (med årskontroller). Fasteffekt resultatene viser en negativ effekt av \textit{felles valuta}, men denne er ikke statistisk signifikant. Tilfeldigeffekt- modellene viser en positiv signifikant effekt av valutaunioner på handel. Se tabell 4.5. \(\gamma_1\) er henholdsvis 1,04 (182,9 \%) og 0,94 (156 \%), \(\gamma_2\) er 0,43 (53,7 \%) og 0,51 (66,5 \%). Tilfeldigeffekt viser omtrent like resultater som ved MKM; \textit{Valutakursvolatilitet}, \textit{avstand} og \textit{areas} negative koeffisienter. \textit{BNP}, \textit{BNP per capita}, \textit{remote} og \textit{open} viser positive effekter.
<table>
<thead>
<tr>
<th>Variabler</th>
<th>Modell</th>
<th>Fast E</th>
<th>Tilfeldig E</th>
<th>Fast E, inkluderer Remote, open og areas</th>
<th>Tilfeldig E, inkluderer Remote, open og areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felles valuta, (y_1)</td>
<td>-0,38**</td>
<td>1,04</td>
<td>-0,77**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,54)</td>
<td>(0,20)</td>
<td>(0,46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valutaunion-land, (y_2)</td>
<td>0,43</td>
<td>0,51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valutakurs volatilitet, (\delta)</td>
<td>-0,005*</td>
<td>-0,005</td>
<td>-0,004*</td>
<td>-0,003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,02)</td>
<td>(0,002)</td>
<td>(0,02)</td>
<td>(0,002)</td>
<td></td>
</tr>
<tr>
<td>BNP, (\beta_1)</td>
<td>1,36</td>
<td>0,82</td>
<td>1,37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,09)</td>
<td>(0,01)</td>
<td>(0,1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNP per capita, (\beta_2)</td>
<td>-0,18**</td>
<td>0,59</td>
<td>-0,06**</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,09)</td>
<td>(0,02)</td>
<td>(0,01)</td>
<td>(0,02)</td>
<td></td>
</tr>
<tr>
<td>Avstand, (\beta_3)</td>
<td>-1,18</td>
<td></td>
<td>-1,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,03)</td>
<td></td>
<td>(0,03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote, (\beta_{10})</td>
<td></td>
<td></td>
<td></td>
<td>40,22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(17,14)</td>
<td></td>
</tr>
<tr>
<td>Areas, (\beta_{11})</td>
<td></td>
<td></td>
<td></td>
<td>-0,16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0,02)</td>
<td></td>
</tr>
<tr>
<td>*Open, ((\beta_{12}10000))</td>
<td></td>
<td></td>
<td></td>
<td>0,327</td>
<td>0,575</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0,06)</td>
<td>(0,04)</td>
</tr>
<tr>
<td>Observasjoner</td>
<td>22 948</td>
<td>22 948</td>
<td>20 723</td>
<td>20 723</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>0,0916</td>
<td>0,0871</td>
<td>0,1058</td>
<td>0,1008</td>
<td></td>
</tr>
<tr>
<td>Between</td>
<td>0,4306</td>
<td>0,6549</td>
<td>0,0812</td>
<td>0,6910</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>0,4196</td>
<td>0,6305</td>
<td>0,1432</td>
<td>0,6547</td>
<td></td>
</tr>
<tr>
<td>Obs. pr. gruppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gjensitt</td>
<td>3,4</td>
<td>3,4</td>
<td>3,5</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>Maks</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Robust standardavvik i parantes.
* Ikke signifikant på 1 % nivå, men på 5 %.
** Ikke signifikant.

Variabler som ikke er rapportert: f. grense, f. språk, f. handelsavtale, f. land, f. koloni, koloni og y75-y90.
Fasteeffekter er ikke inkludert i FE-modellen.
4.2 "Does a Currency affect Trade? The Time Series Evidence"

4.2.1 Fjerner variabler fra regresjonen

I tabell 4.4 (1. og 2. kolonne) er koloni i per t fjernet fra regresjonen. Resultatene fra denne modellen viser ikke store endringer fra resultatene i tabell 3.5 (hvor koloni i per t er inkludert); For fasteffekt- modellen endres R^2 lite. Variabelen for felles valuta øker fra 0,63 til 0,68. I tilfeldigeffekt- modellen endres variabelen for felles valuta fra 0,68 til 0,73. Forklaringsskraften i modellen er tilnærmet lik som når koloni i per t variabelen er inkludert; R^2 endrer seg marginalt.

To variabler er ikke signifikante i 2. kolonne i tabell 4.4. Disse er faste effekter, slik at i fasteffekt- modellen vil ikke en utelatelse av disse gi noen endringer. Derfor viser jeg kun tilfeldigeffekt resultatene når disse er utelatt. Se tabell 4.5 for resultatene fra Hausmanhypotesetest for modellene i tabell 4.4. Denne forkaster nullhypotesen om at det er liten variasjon i koeffisientene. Jeg rapporterer både fast- og tilfeldigeffekt resultatene, men siden nullhypotesen forkastes er det kun fasteffekt- resultatene som er konsistente.

Ved å sammenlikne 2. og 3. kolonne, ser jeg at når antall øyer og felles land variablene blir utelatt er det også her kun marginale endringer. Siden det ikke ser ut som disse tre variablene har noen stor forklaringskraft på bilateral handel bruker jeg de som instrument for felles valuta i neste avsnitt. For at disse skal være gode instrument må de korrelere med variabelen for felles valuta og ikke korrelere med feilbeddet i regresjonen.
Tabell 4.6 Modell (3.5), FE og TE; hvor insignifikante variabler blir ekskludert

<table>
<thead>
<tr>
<th>Avhengig variabel: Bilateral handel</th>
<th>Ekskluderer koloni i per t</th>
<th>Ekskluderer koloni i per t, antall øyer og felles land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast effekt</td>
<td>0,68 (0,04)</td>
<td>0,71 (0,04)</td>
</tr>
<tr>
<td>Tilfeldig effekt</td>
<td>0,73 (0,04)</td>
<td>0,71 (0,04)</td>
</tr>
<tr>
<td>Variabler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felles valuta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felles valuta</td>
<td>0,68 (0,04)</td>
<td>0,71 (0,04)</td>
</tr>
<tr>
<td>Avstand</td>
<td>-1,19 (0,03)</td>
<td>-1,20 (0,02)</td>
</tr>
<tr>
<td>BNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNP</td>
<td>0,07 (0,01)</td>
<td>0,31 (0,01)</td>
</tr>
<tr>
<td>BNP per capita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BNP per capita</td>
<td>0,07 (0,01)</td>
<td>0,31 (0,01)</td>
</tr>
<tr>
<td>F. språk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. språk</td>
<td>0,16 (0,05)</td>
<td>0,15 (0,05)</td>
</tr>
<tr>
<td>F. grense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. grense</td>
<td>0,69 (0,13)</td>
<td>0,68 (0,13)</td>
</tr>
<tr>
<td>F. handelsavtale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. handelsavtale</td>
<td>0,70 (0,04)</td>
<td>0,67 (0,04)</td>
</tr>
<tr>
<td>Ant. landfaste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ant. landfaste</td>
<td>-0,86 (0,04)</td>
<td>-0,76 (0,03)</td>
</tr>
<tr>
<td>Ant. øyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ant. øyer</td>
<td>-0,07** (0,04)</td>
<td></td>
</tr>
<tr>
<td>Areal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areal</td>
<td>0,20 (0,01)</td>
<td>0,21 (0,01)</td>
</tr>
<tr>
<td>F. koloni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. koloni</td>
<td>-0,18 (0,06)</td>
<td>-0,20 (0,06)</td>
</tr>
<tr>
<td>Koloni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koloni</td>
<td>3,02 (0,21)</td>
<td>3,04 (0,16)</td>
</tr>
<tr>
<td>F. land</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. land</td>
<td>1,26** (1,26)</td>
<td></td>
</tr>
<tr>
<td>Observasjoner</td>
<td>218 087</td>
<td>218 087</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>0,1413</td>
<td>0,1382</td>
</tr>
<tr>
<td>Between</td>
<td>0,2694</td>
<td>0,5956</td>
</tr>
<tr>
<td>Overall</td>
<td>0,2544</td>
<td>0,5147</td>
</tr>
<tr>
<td>Obs. pr. gruppe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gjnsnnitt</td>
<td>19,7</td>
<td>19,7</td>
</tr>
<tr>
<td>Maks</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

* Ikke signifikant på 1 % nivå, men på 5 %.
** Ikke signifikant.
Årskontroller y1949-y1997 er ikke rapportert.
Tabell 4.7 Hausman test, ulike estimeringer av ligning 7

<table>
<thead>
<tr>
<th></th>
<th>Chi² fordeling Tabell 4</th>
<th>Chi² fordeling Tabell 4.2 venstre side</th>
<th>Chi² fordeling Tabell 4.2 høyre side</th>
</tr>
</thead>
<tbody>
<tr>
<td>m/ nullverdier</td>
<td>Ikke positiv definit</td>
<td>6423,5</td>
<td>6410,98</td>
</tr>
<tr>
<td>u/ nullverdier</td>
<td>Ikke positiv definit</td>
<td>6994,89</td>
<td>6988,94</td>
</tr>
</tbody>
</table>

4.2.2 Instrument variabler

Som jeg har nevnt tidligere i oppgaven er det ikke variabler som er aktuelle som instrument for felles valuta inkludert i datassetet til Glick og Rose (2002). Alternativet for å kunne bruke IV estimering, er å bruke variabler fra modellen som ikke er signifikante. Jeg bruker her koloni i per t, antall øyer og felles land, som jeg fant ikke hadde en betydelig forklaringskraft på handel, som instrument for felles valuta. Korrelasjonen mellom felles valuta og de tre instrumentene er rapportert i tabell 4.8.

Tabell 4.8 Korrelasjon mellom instrument og felles valuta

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Felles valuta</th>
<th>Koloni i per t</th>
<th>Ant. Øyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felles valuta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koloni i per t</td>
<td>0,2773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ant. Øyer</td>
<td>0,0206</td>
<td>0,0221</td>
<td></td>
</tr>
<tr>
<td>F. Land</td>
<td>0,2288</td>
<td>0,6604</td>
<td>0,0300</td>
</tr>
</tbody>
</table>

I tabell 4.6 er resultatene fra fasteffekt- og tilfeldigeffekt- modellen med instrument variabler for felles valuta. I de to kolonnene til venstre er årsvariablene inkludert og i de to til høyre er de utelatt. Felles valuta viser en signifikant positiv effekt i alle tre modellene.

Tabell 4.9. Instrument variabel estimering; instrument for felles valuta, panelestimering

<table>
<thead>
<tr>
<th>Variabler</th>
<th>Metode</th>
<th>Fast effekt m/årsvariabler</th>
<th>Tilfeldig effekt m/årsvariabler</th>
<th>Fast effekt u/årsvurdering</th>
<th>Tilfeldig effekt u/årsvurdering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felles valuta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument: koloni i per t, antall øyer og f. land</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,21 (0,19)</td>
<td>1,07 (0,2)</td>
<td>1,54 (0,20)</td>
<td>1,77 (0,20)</td>
</tr>
<tr>
<td>Avstand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1,20 (0,02)</td>
<td></td>
<td></td>
<td>-1,18 (0,03)</td>
</tr>
<tr>
<td>BNP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,46 (0,02)</td>
<td>0,82 (0,008)</td>
<td>0,08 (0,01)</td>
<td>0,31 (0,01)</td>
</tr>
<tr>
<td>BNP per capita</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,51 (0,02)</td>
<td>0,30 (0,01)</td>
<td>0,75 (0,01)</td>
<td>0,47 (0,01)</td>
</tr>
<tr>
<td>F. språk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,24 (0,04)</td>
<td></td>
<td></td>
<td>0,13 (0,05)*</td>
</tr>
<tr>
<td>F. grense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,61 (0,12)</td>
<td></td>
<td></td>
<td>0,66 (0,13)</td>
</tr>
<tr>
<td>F. handelsavtale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,87 (0,04)</td>
<td>0,98 (0,04)</td>
<td>0,73 (0,04)</td>
<td>0,70 (0,04)</td>
</tr>
<tr>
<td>Ant. landfaste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0,35 (0,03)</td>
<td></td>
<td></td>
<td>-0,76 (0,03)</td>
</tr>
<tr>
<td>Areal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,06 (0,01)</td>
<td></td>
<td></td>
<td>0,21 (0,01)</td>
</tr>
<tr>
<td>F. koloni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0,19 (0,06)</td>
<td></td>
<td></td>
<td>-0,27 (0,06)</td>
</tr>
<tr>
<td>Koloni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,04 (0,14)</td>
<td></td>
<td></td>
<td>2,99 (0,17)</td>
</tr>
<tr>
<td>Observasjoner</td>
<td>218 087</td>
<td>218 087</td>
<td>218 087</td>
<td>218 087</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>Within</td>
<td>0,1553</td>
<td>0,1538</td>
<td>0,1397</td>
<td>0,1366</td>
</tr>
<tr>
<td></td>
<td>between</td>
<td>0,6543</td>
<td>0,7085</td>
<td>0,2832</td>
<td>0,5926</td>
</tr>
<tr>
<td></td>
<td>overall</td>
<td>0,6070</td>
<td>0,6512</td>
<td>0,2655</td>
<td>0,5114</td>
</tr>
<tr>
<td>obs. pr. gruppe</td>
<td>Min</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Gjinsnitt</td>
<td>19,7</td>
<td>19,6</td>
<td>19,7</td>
<td>19,7</td>
</tr>
<tr>
<td></td>
<td>Maks</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

* Ikke signifikant på 1 % nivå, men på 5 %.

** Ikke signifikant.
Kapittel 5 Konklusjon

Fra min modifisering av metodene i Rose (2000) har jeg valgt å presentere resultater hvor jeg inkluderer flere variabler enn hva Rose gjør. Jeg utnytter også panelegenskapene ved hans datasett, noe som Rose ikke gjør. Jeg fant at det å bli medlem av en valutaunion også har en effekt på handel med andre land utenfor unionen. Denne estimerte jeg til å være 37,7 %.
Referanser

Baldwin, R (2005). ”The Euro`s Trade Effects” Forberedt for ECB Workshop “What Effects is EMU Having On The Euro Area And Its Member Countries?”

(tilgjengelig fra http://www.economics.ca./keith/gravity.pdf)

Lawrence C. Hamilton ”Statistics with STATA”, university of New Hampshire, 2006

Nitsch, V (2002), “Honey, I shrunk the Currency Union Effect on Trade”

Rose, Andrew K, (2002). ”Honey, the Currency Union Effect on Trade hasn’t Blown Up”

Thom, Rodney and Brendan Walsh (2001) “The Effect of a common currency on trade: Ireland before and after the sterling link” *European Economic Review*

Vårdal, E. "Internasjonal makroøkonomi"

“Errors in Bilateral Data Sets” http://faculty.haas.berkeley.edu/arose/Error.html
Tabell A1

Table 1: Benchmark Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Currency Union γ</td>
<td>0.87</td>
<td>1.28</td>
<td>1.09</td>
<td>1.40</td>
<td>1.51</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td>(0.41)</td>
<td>(0.26)</td>
<td>(0.27)</td>
<td>(0.27)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Exchange Rate Volatility δ</td>
<td>-0.062</td>
<td>0.001</td>
<td>-0.060</td>
<td>-0.028</td>
<td>-0.009</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.008)</td>
<td>(0.010)</td>
<td>(0.005)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Output β_1</td>
<td>0.77</td>
<td>0.81</td>
<td>0.81</td>
<td>0.80</td>
<td>0.83</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Output/Capita β_2</td>
<td>0.65</td>
<td>0.66</td>
<td>0.61</td>
<td>0.66</td>
<td>0.73</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Distance β_3</td>
<td>-1.09</td>
<td>-1.15</td>
<td>-1.03</td>
<td>-1.05</td>
<td>-1.12</td>
<td>-1.09</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Contiguity β_4</td>
<td>0.48</td>
<td>0.36</td>
<td>0.73</td>
<td>0.52</td>
<td>0.65</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.19)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Language β_5</td>
<td>0.56</td>
<td>0.36</td>
<td>0.28</td>
<td>0.36</td>
<td>0.50</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>FTA β_6</td>
<td>0.87</td>
<td>1.02</td>
<td>1.26</td>
<td>1.21</td>
<td>0.67</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.21)</td>
<td>(0.16)</td>
<td>(0.17)</td>
<td>(0.14)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Same Nation β_7</td>
<td>1.02</td>
<td>1.37</td>
<td>1.12</td>
<td>1.36</td>
<td>0.88</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td>(0.59)</td>
<td>(0.38)</td>
<td>(0.64)</td>
<td>(0.52)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>Same Coloniser β_8</td>
<td>0.91</td>
<td>0.73</td>
<td>0.52</td>
<td>0.48</td>
<td>0.59</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.14)</td>
<td>(0.12)</td>
<td>(0.12)</td>
<td>(0.12)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Colonial Relationship β_9</td>
<td>2.52</td>
<td>2.40</td>
<td>2.28</td>
<td>2.05</td>
<td>1.75</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.19)</td>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.15)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>4052</td>
<td>4474</td>
<td>5092</td>
<td>5091</td>
<td>4239</td>
<td>22,948</td>
</tr>
<tr>
<td>R²</td>
<td>0.57</td>
<td>0.59</td>
<td>0.62</td>
<td>0.65</td>
<td>0.72</td>
<td>0.63</td>
</tr>
<tr>
<td>RMSE</td>
<td>2.18</td>
<td>2.18</td>
<td>2.03</td>
<td>1.94</td>
<td>1.75</td>
<td>2.02</td>
</tr>
</tbody>
</table>

Note: OLS estimation; robust standard errors in parentheses. Constant term (and year controls for pooled regression) not reported.
Tabell A2

<table>
<thead>
<tr>
<th></th>
<th>Estimate 1</th>
<th>Estimate 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currency Union Dummy</td>
<td>1.38 (.19)</td>
<td>.86 (.19)</td>
</tr>
<tr>
<td>Log Distance</td>
<td>-1.06 (.03)</td>
<td>-1.31 (.03)</td>
</tr>
<tr>
<td>Log Product Real GDP</td>
<td>.94 (.01)</td>
<td>1.06 (.04)</td>
</tr>
<tr>
<td>Common Language Dummy</td>
<td>.56 (.06)</td>
<td>.48 (.06)</td>
</tr>
<tr>
<td>Common Land Border Dummy</td>
<td>.63 (.12)</td>
<td>.30 (.13)</td>
</tr>
<tr>
<td>Free Trade Agreement Dummy</td>
<td>1.09 (.10)</td>
<td>.46 (.12)</td>
</tr>
<tr>
<td>Common Colonizer Dummy</td>
<td>.41 (.08)</td>
<td>.58 (.08)</td>
</tr>
<tr>
<td>Ex-Colony/Colonizer Dummy</td>
<td>1.97 (.13)</td>
<td>1.74 (.13)</td>
</tr>
<tr>
<td>Political Union Dummy</td>
<td>.95 (.37)</td>
<td>.81 (.32)</td>
</tr>
<tr>
<td>Log Product Real GDP/capita</td>
<td>.48 (.02)</td>
<td></td>
</tr>
<tr>
<td>Number landlocked</td>
<td>-.32 (.04)</td>
<td></td>
</tr>
<tr>
<td>Log of Land Area Product</td>
<td>-.15 (.01)</td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>1.97</td>
<td>1.74</td>
</tr>
<tr>
<td>R^2</td>
<td>.64</td>
<td>.72</td>
</tr>
<tr>
<td>Observations</td>
<td>31,101</td>
<td>31,101</td>
</tr>
</tbody>
</table>

Regressand is log of bilateral trade in real American dollars at 5-year intervals.

OLS estimates; robust standard errors in parentheses.
Table 2: Impact of Currency Unions on Trade and Welfare using Anderson-van Wincoop

<table>
<thead>
<tr>
<th>Union Type</th>
<th>% Trade Increase</th>
<th>% Welfare Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMU for current (11) members</td>
<td>58 (12)</td>
<td>11.1 (3.9)</td>
</tr>
<tr>
<td>EMU + Greece</td>
<td>59 (12)</td>
<td>11.1 (3.0)</td>
</tr>
<tr>
<td>EMU + UK</td>
<td>44 (9)</td>
<td>13.8 (3.6)</td>
</tr>
<tr>
<td>EMU for all (15) EU members</td>
<td>40 (8)</td>
<td>14.4 (3.8)</td>
</tr>
<tr>
<td>Argentina dollarizes</td>
<td>132 (37)</td>
<td>1.7 (0.5)</td>
</tr>
<tr>
<td>Ecuador dollarizes</td>
<td>106 (26)</td>
<td>4.5 (1.4)</td>
</tr>
<tr>
<td>Mexico dollarizes</td>
<td>53 (13)</td>
<td>12.4 (3.8)</td>
</tr>
<tr>
<td>Canada dollarizes</td>
<td>38 (9)</td>
<td>15.3 (4.3)</td>
</tr>
<tr>
<td>Mexico and Canada dollarize</td>
<td>27 (8)</td>
<td>18.4 (5.3)</td>
</tr>
<tr>
<td>New Zealand + Australia</td>
<td>125 (35)</td>
<td>2.0 (0.6)</td>
</tr>
<tr>
<td>Israel + Palestine</td>
<td>62 (12)</td>
<td>10.1 (2.9)</td>
</tr>
<tr>
<td>Existing currency unions</td>
<td>91 (22)</td>
<td>5.0 (1.2)</td>
</tr>
<tr>
<td>World monetary union</td>
<td>10 (2)</td>
<td>21.3 (5.1)</td>
</tr>
</tbody>
</table>

Standard errors recorded in parentheses.
<table>
<thead>
<tr>
<th>Currency Union Member</th>
<th>End</th>
<th>Bhutan</th>
<th>Pakistan</th>
<th>1068</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigua And Barbuda</td>
<td>1976</td>
<td>Botswana</td>
<td>Lesotho</td>
<td>1977</td>
</tr>
<tr>
<td>Antigua And Barbuda</td>
<td>ongoing</td>
<td>Botswana</td>
<td>Swaziland</td>
<td>1977</td>
</tr>
<tr>
<td>Antigua And Barbuda</td>
<td>ongoing</td>
<td>Grenada</td>
<td>Malaysia</td>
<td>1971</td>
</tr>
<tr>
<td>Antigua And Barbuda</td>
<td>1971</td>
<td>Grenada</td>
<td>Singapore</td>
<td>ongoing</td>
</tr>
<tr>
<td>Antigua And Barbuda</td>
<td>ongoing</td>
<td>Montserrat</td>
<td>India</td>
<td>1968</td>
</tr>
<tr>
<td>Antigua And Barbuda</td>
<td>ongoing</td>
<td>St. Kitts & Nevis</td>
<td>Pakistan</td>
<td>1971</td>
</tr>
<tr>
<td>Antigua And Barbuda</td>
<td>ongoing</td>
<td>St. Lucia</td>
<td>Benin</td>
<td>ongoing</td>
</tr>
<tr>
<td>Antigua And Barbuda</td>
<td>ongoing</td>
<td>St. Vincent & Grenada</td>
<td>Burkina Faso</td>
<td>ongoing</td>
</tr>
<tr>
<td>Antigua And Barbuda</td>
<td>1976</td>
<td>Trinidad & Tobago</td>
<td>Central African Rep.</td>
<td>ongoing</td>
</tr>
<tr>
<td>Anhui</td>
<td>ongoing</td>
<td>Cameroon</td>
<td>Chad</td>
<td>ongoing</td>
</tr>
<tr>
<td>Anhui</td>
<td>1984</td>
<td>Surname</td>
<td>Comoros</td>
<td>1994</td>
</tr>
<tr>
<td>Australia</td>
<td>ongoing</td>
<td>Kiribati</td>
<td>Cameroon</td>
<td>Congo, Rep. Of</td>
</tr>
<tr>
<td>Australia</td>
<td>ongoing</td>
<td>Nauru</td>
<td>Cameroon</td>
<td>Cote D' Ivoire (Ivory Coast)</td>
</tr>
<tr>
<td>Australia</td>
<td>1979</td>
<td>Solomon Islands</td>
<td>Cameroon</td>
<td>Equatorial Guinea</td>
</tr>
<tr>
<td>Australia</td>
<td>1991</td>
<td>Tonga</td>
<td>Gabon</td>
<td>ongoing</td>
</tr>
<tr>
<td>Australia</td>
<td>ongoing</td>
<td>Tuvalu</td>
<td>Guinea</td>
<td>1959</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>1974</td>
<td>India</td>
<td>Guinea-Bissau</td>
<td>ongoing</td>
</tr>
<tr>
<td>Barbados</td>
<td>1975</td>
<td>Dominica</td>
<td>Cameroon</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Barbados</td>
<td>1975</td>
<td>Grenada</td>
<td>Cameroon</td>
<td>Mali</td>
</tr>
<tr>
<td>Barbados</td>
<td>1971</td>
<td>Guyana</td>
<td>Cameroon</td>
<td>Mauritania</td>
</tr>
<tr>
<td>Barbados</td>
<td>1975</td>
<td>Montserrat</td>
<td>Cameroon</td>
<td>Niger</td>
</tr>
<tr>
<td>Barbados</td>
<td>1975</td>
<td>St. Kitts & Nevis</td>
<td>Cameroon</td>
<td>Reunion</td>
</tr>
<tr>
<td>Barbados</td>
<td>1975</td>
<td>St. Lucia</td>
<td>Cameroon</td>
<td>Senegal</td>
</tr>
<tr>
<td>Barbados</td>
<td>1975</td>
<td>St. Vincent & Grenada</td>
<td>Cameroon</td>
<td>Togo</td>
</tr>
<tr>
<td>Benin</td>
<td>ongoing</td>
<td>Burundi</td>
<td>Central African Rep.</td>
<td>Gabon</td>
</tr>
<tr>
<td>Benin</td>
<td>ongoing</td>
<td>Cote D' Ivoire (Ivory Coast)</td>
<td>Central African Rep.</td>
<td>Guinea</td>
</tr>
<tr>
<td>Benin</td>
<td>ongoing</td>
<td>Gabon</td>
<td>Central African Rep.</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Benin</td>
<td>ongoing</td>
<td>Guinea-Bissau</td>
<td>Central African Rep.</td>
<td>Mauritania</td>
</tr>
<tr>
<td>Benin</td>
<td>ongoing</td>
<td>Mali</td>
<td>Central African Rep.</td>
<td>Reunion</td>
</tr>
<tr>
<td>Benin</td>
<td>1976</td>
<td>Reunion</td>
<td>Chad</td>
<td>Benin</td>
</tr>
<tr>
<td>Benin</td>
<td>ongoing</td>
<td>Senegal</td>
<td>Chad</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>Benin</td>
<td>ongoing</td>
<td>Togo</td>
<td>Chad</td>
<td>Comoros</td>
</tr>
<tr>
<td>Bhutan</td>
<td>ongoing</td>
<td>India</td>
<td>Chad</td>
<td>Congo, Rep. Of</td>
</tr>
<tr>
<td>Country</td>
<td>Territorial Claim</td>
<td>Status</td>
<td>Country</td>
<td>Territorial Claim</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>--------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>Chad</td>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>ongoing</td>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>Togo</td>
</tr>
<tr>
<td>Chad</td>
<td>Equatorial Guinea</td>
<td>ongoing</td>
<td>Denmark</td>
<td>Faeroe Islands</td>
</tr>
<tr>
<td>Chad</td>
<td>Gabon</td>
<td>ongoing</td>
<td>Denmark</td>
<td>Greenland</td>
</tr>
<tr>
<td>Chad</td>
<td>Guinea</td>
<td>1960</td>
<td>Djibouti</td>
<td>Benin</td>
</tr>
<tr>
<td>Chad</td>
<td>Guinea-Bissau</td>
<td>ongoing</td>
<td>Djibouti</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>Chad</td>
<td>Madagascar</td>
<td>1960</td>
<td>Djibouti</td>
<td>Cameroon</td>
</tr>
<tr>
<td>Chad</td>
<td>Mali</td>
<td>ongoing</td>
<td>Djibouti</td>
<td>Central African Rep.</td>
</tr>
<tr>
<td>Chad</td>
<td>Mauritania</td>
<td>1974</td>
<td>Djibouti</td>
<td>Chad</td>
</tr>
<tr>
<td>Chad</td>
<td>Niger</td>
<td>ongoing</td>
<td>Djibouti</td>
<td>Comoros</td>
</tr>
<tr>
<td>Chad</td>
<td>Reunion</td>
<td>1976</td>
<td>Djibouti</td>
<td>Congo, Rep. Of</td>
</tr>
<tr>
<td>Chad</td>
<td>Senegal</td>
<td>ongoing</td>
<td>Djibouti</td>
<td>Cote D’Ivoire (Ivory Coast)</td>
</tr>
<tr>
<td>Chad</td>
<td>Togo</td>
<td>ongoing</td>
<td>Djibouti</td>
<td>Gabon</td>
</tr>
<tr>
<td>Comoros</td>
<td>Benin</td>
<td>1994</td>
<td>Djibouti</td>
<td>Guinea</td>
</tr>
<tr>
<td>Comoros</td>
<td>Burkina Faso</td>
<td>1994</td>
<td>Djibouti</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Comoros</td>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>1994</td>
<td>Djibouti</td>
<td>Mauritania</td>
</tr>
<tr>
<td>Comoros</td>
<td>Equatorial Guinea</td>
<td>1994</td>
<td>Djibouti</td>
<td>Niger</td>
</tr>
<tr>
<td>Comoros</td>
<td>Gabon</td>
<td>1994</td>
<td>Djibouti</td>
<td>Reunion</td>
</tr>
<tr>
<td>Comoros</td>
<td>Guinea</td>
<td>1996</td>
<td>Djibouti</td>
<td>Senegal</td>
</tr>
<tr>
<td>Comoros</td>
<td>Madagascar</td>
<td>1992</td>
<td>Djibouti</td>
<td>Togo</td>
</tr>
<tr>
<td>Comoros</td>
<td>Mali</td>
<td>1994</td>
<td>Dominica</td>
<td>Grenada</td>
</tr>
<tr>
<td>Comoros</td>
<td>Mauritania</td>
<td>1974</td>
<td>Dominica</td>
<td>Guyana</td>
</tr>
<tr>
<td>Comoros</td>
<td>Niger</td>
<td>1994</td>
<td>Dominica</td>
<td>Montserrat</td>
</tr>
<tr>
<td>Comoros</td>
<td>Reunion</td>
<td>1976</td>
<td>Dominica</td>
<td>St. Kitts & Nevis</td>
</tr>
<tr>
<td>Comoros</td>
<td>Senegal</td>
<td>1994</td>
<td>Dominica</td>
<td>St. Lucia</td>
</tr>
<tr>
<td>Comoros</td>
<td>Togo</td>
<td>1994</td>
<td>Dominica</td>
<td>St. Vincent & Gren</td>
</tr>
<tr>
<td>Congo, Rep. Of</td>
<td>Benin</td>
<td>ongoing</td>
<td>Dominica</td>
<td>Trinidad & Tobago</td>
</tr>
<tr>
<td>Congo, Rep. Of</td>
<td>Burkina Faso</td>
<td>ongoing</td>
<td>Equatorial Guinea</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>Congo, Rep. Of</td>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>ongoing</td>
<td>Equatorial Guinea</td>
<td>Cote D’Ivoire (Ivory Coast)</td>
</tr>
<tr>
<td>Congo, Rep. Of</td>
<td>Equatorial Guinea</td>
<td>ongoing</td>
<td>Equatorial Guinea</td>
<td>Gabon</td>
</tr>
<tr>
<td>Congo, Rep. Of</td>
<td>Gabon</td>
<td>ongoing</td>
<td>Equatorial Guinea</td>
<td>Guinea-Bissau</td>
</tr>
<tr>
<td>Congo, Rep. Of</td>
<td>Guinea-Bissau</td>
<td>ongoing</td>
<td>Equatorial Guinea</td>
<td>Niger</td>
</tr>
<tr>
<td>Congo, Rep. Of</td>
<td>Mali</td>
<td>ongoing</td>
<td>Equatorial Guinea</td>
<td>Togo</td>
</tr>
<tr>
<td>Congo, Rep. Of</td>
<td>Senegal</td>
<td>ongoing</td>
<td>France</td>
<td>Martinique</td>
</tr>
<tr>
<td>Congo, Rep. Of</td>
<td>Togo</td>
<td>ongoing</td>
<td>France</td>
<td>Morocco</td>
</tr>
<tr>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>Burkina Faso</td>
<td>ongoing</td>
<td>France</td>
<td>Pierre & Miquelon</td>
</tr>
<tr>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>Madagascar</td>
<td>1992</td>
<td>France</td>
<td>St. Pierre & Miquelon</td>
</tr>
<tr>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>Mali</td>
<td>ongoing</td>
<td>France</td>
<td>Tunisia</td>
</tr>
<tr>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>Mauritania</td>
<td>1974</td>
<td>Gabon</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>Niger</td>
<td>ongoing</td>
<td>Gabon</td>
<td>Cote D’Ivoire (Ivory Coast)</td>
</tr>
<tr>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>Reunion</td>
<td>1976</td>
<td>Gabon</td>
<td>Guinea</td>
</tr>
<tr>
<td>Cote D’Ivoire (Ivory Coast)</td>
<td>Senegal</td>
<td>ongoing</td>
<td>Gabon</td>
<td>Guinea-Bissau</td>
</tr>
<tr>
<td>Country A</td>
<td>Country B</td>
<td>Year A</td>
<td>Country C</td>
<td>Year C</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Gabon</td>
<td>Mali</td>
<td>ongoing</td>
<td>Madagascar</td>
<td>Mali</td>
</tr>
<tr>
<td>Gabon</td>
<td>Mauritania</td>
<td>1974</td>
<td>Madagascar</td>
<td>Mauritania</td>
</tr>
<tr>
<td>Gabon</td>
<td>Niger</td>
<td>ongoing</td>
<td>Madagascar</td>
<td>Niger</td>
</tr>
<tr>
<td>Gabon</td>
<td>Reunion</td>
<td>1976</td>
<td>Madagascar</td>
<td>Reunion</td>
</tr>
<tr>
<td>Gabon</td>
<td>Senegal</td>
<td>ongoing</td>
<td>Madagascar</td>
<td>Senegal</td>
</tr>
<tr>
<td>Gabon</td>
<td>Togo</td>
<td>ongoing</td>
<td>Madagascar</td>
<td>Togo</td>
</tr>
<tr>
<td>Gambia</td>
<td>Ghana</td>
<td>1905</td>
<td>Malawi</td>
<td>Zambia</td>
</tr>
<tr>
<td>Gambia</td>
<td>Nigeria</td>
<td>1907</td>
<td>Malawi</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>Gambia</td>
<td>Sierra Leone</td>
<td>1905</td>
<td>Malaysia</td>
<td>Singapore</td>
</tr>
<tr>
<td>Ghana</td>
<td>Nigeria</td>
<td>1905</td>
<td>Maldives</td>
<td>Mauritius</td>
</tr>
<tr>
<td>Ghana</td>
<td>Sierra Leone</td>
<td>1986</td>
<td>Maldives</td>
<td>Pakistan</td>
</tr>
<tr>
<td>Grenada</td>
<td>Guyana</td>
<td>1971</td>
<td>Mali</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>Grenada</td>
<td>Montserrat</td>
<td>ongoing</td>
<td>Mali</td>
<td>Mauritania</td>
</tr>
<tr>
<td>Grenada</td>
<td>St. Kitts & Nevis</td>
<td>ongoing</td>
<td>Mali</td>
<td>Niger</td>
</tr>
<tr>
<td>Grenada</td>
<td>St. Lucia</td>
<td>ongoing</td>
<td>Mali</td>
<td>Reunion</td>
</tr>
<tr>
<td>Grenada</td>
<td>St. Vincent & Gren</td>
<td>ongoing</td>
<td>Mali</td>
<td>Senegal</td>
</tr>
<tr>
<td>Grenada</td>
<td>Trinidad & Tobago</td>
<td>1976</td>
<td>Mali</td>
<td>Togo</td>
</tr>
<tr>
<td>Guineea</td>
<td>Burkina Faso</td>
<td>1906</td>
<td>Mauritania</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>Guinea</td>
<td>Cote Divoire (Ivoir Coast)</td>
<td>1906</td>
<td>Mauritania</td>
<td>Niger</td>
</tr>
<tr>
<td>Guinea</td>
<td>Madagascar</td>
<td>1906</td>
<td>Mauritania</td>
<td>Reunion</td>
</tr>
<tr>
<td>Guinea</td>
<td>Mali</td>
<td>1906</td>
<td>Mauritania</td>
<td>Senegal</td>
</tr>
<tr>
<td>Guinea</td>
<td>Mauritania</td>
<td>1906</td>
<td>Mauritania</td>
<td>Togo</td>
</tr>
<tr>
<td>Guinea</td>
<td>Niger</td>
<td>1906</td>
<td>Mauritania</td>
<td>Seychelles</td>
</tr>
<tr>
<td>Guinea</td>
<td>Reunion</td>
<td>1906</td>
<td>Montserrat</td>
<td>St. Kitts & Nevis</td>
</tr>
<tr>
<td>Guinea</td>
<td>Senegal</td>
<td>1906</td>
<td>Montserrat</td>
<td>St. Lucia</td>
</tr>
<tr>
<td>Guineea</td>
<td>Togo</td>
<td>1906</td>
<td>Montserrat</td>
<td>St. Vincent & Gren</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>Burkina Faso</td>
<td>ongoing</td>
<td>Montserrat</td>
<td>Trinidad & Tobago</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>Cote Divoire (Ivoir Coast)</td>
<td>ongoing</td>
<td>Netherlands Antilles</td>
<td>Suriname</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>Mali</td>
<td>ongoing</td>
<td>New Caledonia</td>
<td>French Polynesia</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>Niger</td>
<td>ongoing</td>
<td>New Caledonia</td>
<td>Vanuatu</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>Senegal</td>
<td>ongoing</td>
<td>New Caledonia</td>
<td>Wallis & Futuna</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>Togo</td>
<td>ongoing</td>
<td>New Zealand</td>
<td>Samoa</td>
</tr>
<tr>
<td>Guyana</td>
<td>Montserrat</td>
<td>1971</td>
<td>Niger</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>Guyana</td>
<td>St. Lucia</td>
<td>1971</td>
<td>Niger</td>
<td>Senegal</td>
</tr>
<tr>
<td>Guyana</td>
<td>St. Vincent & Gren</td>
<td>1971</td>
<td>Niger</td>
<td>Togo</td>
</tr>
<tr>
<td>Guyana</td>
<td>Trinidad & Tobago</td>
<td>1971</td>
<td>Nigeria</td>
<td>Sierra Leone</td>
</tr>
<tr>
<td>India</td>
<td>Maldives</td>
<td>1996</td>
<td>Oman</td>
<td>India</td>
</tr>
<tr>
<td>India</td>
<td>Mauritius</td>
<td>1906</td>
<td>Pakistan</td>
<td>Mauritius</td>
</tr>
<tr>
<td>India</td>
<td>Pakistan</td>
<td>1906</td>
<td>Pakistan</td>
<td>Seychelles</td>
</tr>
<tr>
<td>India</td>
<td>Seychelles</td>
<td>1906</td>
<td>Portugal</td>
<td>Angola</td>
</tr>
<tr>
<td>Kenya</td>
<td>Somalia</td>
<td>1971</td>
<td>Portugal</td>
<td>Cape Verde</td>
</tr>
<tr>
<td>Kenya</td>
<td>Tanzania</td>
<td>1978</td>
<td>Portugal</td>
<td>Guinea-Bissau</td>
</tr>
<tr>
<td>Kenya</td>
<td>Uganda</td>
<td>1976</td>
<td>Portugal</td>
<td>Mozambique</td>
</tr>
<tr>
<td>Kuwait</td>
<td>India</td>
<td>1981</td>
<td>Portugal</td>
<td>Sao Tome & Principe</td>
</tr>
<tr>
<td>Lesotho</td>
<td>Swaziland</td>
<td>ongoing</td>
<td>Qatar</td>
<td>India</td>
</tr>
<tr>
<td>Country 1</td>
<td>Country 2</td>
<td>Status</td>
<td>Year</td>
<td>Country 3</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>Qatar</td>
<td>United Arab Emirates</td>
<td>ongoing</td>
<td>1974</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Reunion</td>
<td>Burkina Faso</td>
<td>1970</td>
<td>United Kingdom</td>
<td>Ireland</td>
</tr>
<tr>
<td>Reunion</td>
<td>Senegal</td>
<td>1978</td>
<td>United Kingdom</td>
<td>Israel</td>
</tr>
<tr>
<td>Reunion</td>
<td>Togo</td>
<td>1978</td>
<td>United Kingdom</td>
<td>Jamaica</td>
</tr>
<tr>
<td>Senegal</td>
<td>Burkina Faso</td>
<td>ongoing</td>
<td>1978</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Senegal</td>
<td>Togo</td>
<td>ongoing</td>
<td>1987</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Somalia</td>
<td>Tanzania</td>
<td>1971</td>
<td>United Kingdom</td>
<td>Kuwait</td>
</tr>
<tr>
<td>Somalia</td>
<td>Uganda</td>
<td>1971</td>
<td>United Kingdom</td>
<td>Libya</td>
</tr>
<tr>
<td>South Africa</td>
<td>Botswana</td>
<td>1977</td>
<td>United Kingdom</td>
<td>Malawi</td>
</tr>
<tr>
<td>South Africa</td>
<td>Lesotho</td>
<td>ongoing</td>
<td>1971</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>South Africa</td>
<td>Swaziland</td>
<td>ongoing</td>
<td>1971</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Spain</td>
<td>Equatorial Guinea</td>
<td>1969</td>
<td>United Kingdom</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>India</td>
<td>1969</td>
<td>United Kingdom</td>
<td>Oman</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>Pakistan</td>
<td>1969</td>
<td>United Kingdom</td>
<td>Samoa</td>
</tr>
<tr>
<td>St. Kitts & Nevis</td>
<td>St. Lucia</td>
<td>ongoing</td>
<td>1969</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>St. Kitts & Nevis</td>
<td>St. Vincent & Gren</td>
<td>ongoing</td>
<td>1969</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>St. Kitts & Nevis</td>
<td>Trinidad & Tobago</td>
<td>1969</td>
<td>United Kingdom</td>
<td>South Africa</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Benin</td>
<td>1969</td>
<td>United Kingdom</td>
<td>St. Helena</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Burkina Faso</td>
<td>1969</td>
<td>United Kingdom</td>
<td>Tanzania</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Cameroon</td>
<td>1969</td>
<td>United Kingdom</td>
<td>Uganda</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Chad</td>
<td>1969</td>
<td>United Kingdom</td>
<td>Yemen, Republic of</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Costa D’Ivorie (Ivory Coast)</td>
<td>1969</td>
<td>United States</td>
<td>American Samoa</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Djibouti</td>
<td>1969</td>
<td>United States</td>
<td>Bahamas</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Gabon</td>
<td>1969</td>
<td>United States</td>
<td>Belize</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Guinea</td>
<td>1969</td>
<td>United States</td>
<td>Bermuda</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Mali</td>
<td>1969</td>
<td>United States</td>
<td>Guam</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Reunion</td>
<td>1969</td>
<td>United States</td>
<td>Panama</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Senegal</td>
<td>1969</td>
<td>Vanuatu</td>
<td>French Polynesia</td>
</tr>
<tr>
<td>St. Pierre & Miquelon</td>
<td>Togo</td>
<td>1969</td>
<td>Vanuatu</td>
<td>Wallis & Futuna</td>
</tr>
<tr>
<td>St. Lucia</td>
<td>St. Vincent & Gren</td>
<td>ongoing</td>
<td>1969</td>
<td>Vanuatu</td>
</tr>
<tr>
<td>St. Lucia</td>
<td>Trinidad & Tobago</td>
<td>1969</td>
<td>Yemen, P.D.R.</td>
<td>India</td>
</tr>
<tr>
<td>St. Vincent & Gren</td>
<td>Trinidad & Tobago</td>
<td>1969</td>
<td>Yemen, P.D.R.</td>
<td>Kenya</td>
</tr>
<tr>
<td>Tanzania</td>
<td>Uganda</td>
<td>1969</td>
<td>Yemen, P.D.R.</td>
<td>Somalia</td>
</tr>
<tr>
<td>Togo</td>
<td>Burkina Faso</td>
<td>ongoing</td>
<td>1969</td>
<td>Yemen, P.D.R.</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Bahamas</td>
<td>1969</td>
<td>Yemen, P.D.R.</td>
<td>Uganda</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Bermuda</td>
<td>1969</td>
<td>Yemen, Republic of</td>
<td>India</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Cyprus</td>
<td>1969</td>
<td>Yemen, Republic of</td>
<td>Kenya</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Falkland Islands</td>
<td>ongoing</td>
<td>1969</td>
<td>Yemen, Republic of</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Gambia</td>
<td>1969</td>
<td>Yemen, Republic of</td>
<td>Tanzania</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Ghana</td>
<td>1969</td>
<td>Yemen, Republic of</td>
<td>Uganda</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Gibraltar</td>
<td>ongoing</td>
<td>1969</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>